Bayesian Risk Aggregation: Correlation Uncertainty and Expert Judgement

Klaus Böcker * Alessandra Crimmi † Holger Fink ‡

Abstract

In this paper we present a novel way for estimating aggregated EC figures based on Bayesian copula estimation. Contrary to the classical approach of using a single (point estimator) inter-risk-correlation matrix we derive a probability distribution of possible correlation matrices that enables us to tackle the important issue of parameter uncertainty. More precisely, we describe in detail how formal expert judgement can be performed and utilised to augment scarce empirical, resulting in a posterior distribution that contains all relevant information about the inter-risk-correlation matrix. We then present simulation algorithms based on Markov-Chain-Monte-Carlo methods that allow to simulate sample correlation matrices from different posterior distributions. Finally, we give a numerical example that serves to illustrate our new approach and, in particular, shows how important accuracy measures for aggregated economic capital and diversification benefits can be obtained by adopting a Bayesian perspective.

1 Introduction

The 2007/2008 global financial crisis has demonstrated serious weaknesses in corporate governance and risk management, in particular, many institutions’ lack of ability to create a viable and sound framework for risk appetite. In addition to design failures such as disregarding funding risk and the liquidity risk in trading portfolios, risk managers focused too much on single number metrics like value-at-risk (VaR) or economic capital (EC) instead of using a number of distinct risk measures.

*Risk Analytics and Methods, UniCredit Bank AG, München, Germany, email: klaus.boecker@unicreditgroup.de
†Risk Analytics and Methods, UniCredit Group, Milan, Italy, email: alessandra.crimmi@unicreditgroup.eu
‡Center for Mathematical Sciences, Munich University of Technology, Garching bei München, Germany, email: fink@ma.tum.de
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Market risk</td>
<td>3,564</td>
</tr>
<tr>
<td>Credit Risk</td>
<td>9,981</td>
</tr>
<tr>
<td>Operational risk</td>
<td>2,612</td>
</tr>
<tr>
<td>Business risk</td>
<td>1,666</td>
</tr>
<tr>
<td>Total EC</td>
<td>17,823</td>
</tr>
</tbody>
</table>

Table 1.1: Prototypical example of a bank’s Pillar 3 report of EC for different risk types as well as the aggregated EC. Given no further information about the measurement error, the presented number for aggregated EC suggests an absolute uncertainty of ±1 mn EUR, corresponding to a relative uncertainty of 0.0056 %.

Assessing risk by means of a single number only becomes even more of a problem if quantitative mathematical models are used without any adjustment for model uncertainty. Much too often in risk management practices, results are calculated to a fictitious degree of accuracy, which is greater than is warranted by the data used in the calculation. As a typical example, look at the—of course illustrative but nevertheless realistic—EC figures for different risk types and total aggregated EC presented in Table 1.1. Recall that the purpose of EC is to capture extreme losses and therefore it is measured at high confidence levels typically in a range between 99.50 % and 99.98 %. The way the figures are presented in Table 1.1 suggests that the aggregated EC, which is a key element in the practical implementation of a bank’s risk appetite framework has been determined with the incredible relative precision\(^1\) of \(\pm 5.6 \times 10^{-5}\).

Such pseudo accuracy leads to a wrong subjective risk perception and may create a dangerous overconfidence of the decision maker. In general, the feeling of greater security tempt people to be more reckless and, in the context of risk management, leads decision makers to concentrate mainly on the upside opportunity of markets and to neglect downside risk. One of the main concerns in connection with risk aggregation is of whether and to which extent diversification benefits between different risk types can be identified. Apart from the very simple approach of adding-up all EC estimates for each risk category or business line one can distinguish between top-down or modular approaches on the one hand and bottom-up or multi-factor simulation approaches on the other, cf. for instance Saita [24] for further information and references about principles of risk aggregation.

Bottom-up approaches basically model all the bank’s real and financial variables including assets, liabilities and interest sensitive off-balance sheet items simultaneously, see for e.g. Kretzschmar, McNeil, and Kirchner [16]. This allows to capture gains and losses at

\(^1\) As an illustration, the same relative error is obtained when computing a distance of about 18 meters while maintaining an accuracy of 1 mm.
the level of individual instruments or positions without the need for creating artificial risk silos. Such sophisticated approaches are particularly important for market and credit risk, which are highly related and inextricably linked with each other, see e.g. the Research Task Force of the Basel Committee on Banking Supervision [2] and Hartmann, Pritsker, and Schuermann [14] for more about the interaction of market and credit risk.

While financial institutions and supervisors are seeking for flexible bottom-up methods for the aggregation of market and credit risk, conceptual difficulties remain with respect to other risk types such as operational risk and business risk. As a matter of fact, banks are currently still favoring simpler top-down methods when computing their aggregated EC as pointed out in IFRI/CRO Forum [15]. According to this survey the most popular method in practice is the aggregation-by-risk-type approach where stand-alone risk figures of different risk types are combined in some way to obtain the desired aggregated EC. In a similar, more recent survey of the Basel Committee [3] it is reported that “there is no established set of best practices concerning risk aggregation in the industry.” From all this, it can be expected that for quite a long time hybrid approaches that at least partially rely on an inter-risk-correlation matrix, will heavily influence market practices.

The simplest form of risk aggregation expresses the dependence between different risk types by an inter-risk-correlation matrix R, and its estimation and calibration is a core problem for the calculation of total EC in practice. A standard approach is to model the dependence structure between risk types by a distributional copula, see e.g. the references in Böcker [5]. Estimates for inter-risk-correlations differ significantly within the industry. The IFRI/CRO Forum [15] points out that “correlation estimates used vary widely, to an extent that is unlikely to be solely attributable to differences in business mix.” This obviously shows that the estimation of inter-risk correlations is afflicted with high uncertainties. One reason for this is that very often reliable data are scarce and do not cover long historical time periods. Therefore, inter-risk correlations are approximated by the co-movement of asset price indices or similar proxies of which, it is hoped, are representative for these risk types. As a consequence thereof, a reliable and robust statistical estimate of the inter-risk-correlation matrix is often not possible and it is necessary to draw on expert opinions. This has recently also been acknowledged by the Committee of European Banking Supervisors in their recent consultation paper [8], where they explicitly distinguish statistical techniques versus expert judgements.

Our work makes two novel contributions for estimating aggregated EC within an aggregation-by-risk-type framework. First, we explicitly address the existence of parameter uncertainty associated with the inter-risk-correlation matrix. Second, we present a sophisticated method for assessing inter-risk correlations (more precisely, the Gaussian copula parameters) by means of expert judgement. To illustrate our approach, we calcu-
late aggregated EC for the same sample portfolio already used in Böcker [5], consisting of 10 % market risk, 61 % credit risk, 14 % operational risk, and 15 % business risk in terms of 99.95 % EC. Here, however, we make an assumption which is key to what follows, namely that as a consequence of all the uncertainties a bank’s inter-risk-correlation matrix cannot be considered as a fixed parameter of the risk-aggregation model but should rather be treated as a random parameter. Hence, the inter-risk-correlation matrix R (or, more generally, the parameters of the copula) is described by a distribution function, which is referred to as the posterior distribution. This distribution comprises information stemming from empirical data X (e.g. time series of risk proxies representative for each risk type) as well as from expert judgement.

This paper is organised as follows. In Section 2 we will briefly recap the “classical” aggregation-by-risk-type approach using a fixed Gaussian copula and also introduce the portfolio that serves as an illustrative example. Section 3 then describes the construction of the prior and posterior distribution of the inter-risk-correlation matrix by considering the different pair correlations separately. For two specific models (the beta and the triangular models) we suggest a Markov-Chain-Monte-Carlo (MCMC) algorithms that can easily be used to sample a set of correlation matrices from the posterior. In Section 4 we discuss a numerical example of risk aggregation and, finally, Section 5 is devoted to the important issue of how inter-risk correlations may be estimated using expert knowledge.

2 Classical copula aggregation

A d-dimensional distributional copula C is a d-dimensional distribution function on $[0,1]^d$ with uniform marginals. Among all copulas discussed in the literature, maybe those most frequently used for risk aggregation are the Gaussian copula and the t copula. The importance of copulas for financial risk management is essentially a result of Sklar’s theorem, stating that every multivariate distribution function can be separated into their marginal distribution functions and a copula. Therefore, copulas allow for a separate modelling of the marginal distribution functions of distinct risk types on the one hand and their dependence structure (i.e. the copula) on the other. Distributional copulas have been frequently applied to risk aggregation e.g. Dimakos & Aas [9], Rosenberg & Schuermann [23], Ward & Lee [26], or Brockmann & Kalkbrener [6].

In the sequel, we summarise some properties of the Gaussian copula, see Cherubini, Luciano, and Vecchiato [7] for more details. Let Φ denote the standard univariate normal distribution function, Φ_R^d the standard multivariate normal distribution function with $d \times d$ correlation matrix R, and $(u_1, \ldots, u_d) \in [0,1]^d$. Then, the distribution function of
the \(d\)-dimensional Gaussian copula is given by

\[
C_{\mathbf{R}}^d(u_1, \ldots, u_d) = \Phi_{\mathbf{R}}^d(\Phi^{-1}(u_1), \ldots, \Phi^{-1}(u_d))
\]

(2.1)

where \(\Phi^{-1}(\cdot)\) denotes the inverse of the standard normal distribution function. The density of the \(d\)-dimensional Gaussian copula can be written as

\[
c_{\mathbf{R}}^d(u_1, \ldots, u_d) = \det(\mathbf{R})^{-\frac{1}{2}} \exp \left[-\frac{1}{2} \mathbf{\xi}'(\mathbf{R}^{-1} - \mathbf{I}_d)\mathbf{\xi} \right]
\]

(2.2)

with \(\mathbf{\xi} = (\Phi^{-1}(u_1), \ldots, \Phi^{-1}(u_d))'\) and identity matrix \(\mathbf{I}_d\).

We now turn to the estimation of the Gaussian copula which is usually done by maximising the corresponding likelihood function. Suppose \(\mathbf{x}_1, \ldots, \mathbf{x}_n\) is an \(n\)-sample of \(d \times 1\) mutually independent observations that are identically distributed. In the context of inter-risk aggregation each marginal component of \(\mathbf{x}_j, j = 1, \ldots, n\), represents a suitable risk driver or loss proxy representative for a different risk type. Specifically, assuming a Gaussian copula model means that all components of \(\mathbf{x}_j, j = 1, \ldots, n\), have a Gaussian dependence structure.

After transforming the sample data \(\mathbf{x}_j\) into variates \(\mathbf{u}_j\) with uniform marginals (e.g. using order statistics or parametric distribution functions), we obtain for the likelihood of the Gaussian copula

\[
l(\mathbf{R}|\mathbf{\xi}_1, \ldots, \mathbf{\xi}_n) \propto \det(\mathbf{R})^{-\frac{1}{2}} n \exp \left[-\frac{1}{2} \text{tr}(\mathbf{R}^{-1} \mathbf{B}) \right].
\]

(2.3)

Here, the \(d \times d\) symmetric, positive semidefinite matrix \(\mathbf{B}\) is the sample covariance matrix of the data after transformation to standard Normal marginals, i.e.

\[
\mathbf{B} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{\xi}_j \mathbf{\xi}_j' \quad \text{with} \quad \mathbf{\xi}_j = (\Phi^{-1}(u_{1j}), \ldots, \Phi^{-1}(u_{dj}))',
\]

(2.4)

which is also the global maximum of the likelihood function (2.3), see e.g. Press [20], p. 183. Without loss of generality, we may always use a standardised sample \(\mathbf{\xi}_j\) that has exactly unit sample variance so that \(\mathbf{B}\) equals the sample correlation matrix. Then we finally obtain the MLE of the Gaussian copula parameter as

\[
\hat{\mathbf{R}} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{\xi}_j \mathbf{\xi}_j'.
\]

After the matrix \(\hat{\mathbf{R}}\) has been determined, one can start risk-type aggregation. As mentioned in the introduction, we adopt the portfolio used in Böcker [5] consisting of 10 % market risk, 61 % credit risk, 14 % operational risk, and 15 % business risk, representing
Table 2.2: Marginal distributions for market risk (MR), credit risk (CR), operational risk (OR), and business risk (BR), where F_ν is the Student-t distribution function with ν degrees of freedom and Φ is the standard normal distribution function. MR follows a scaled Student-t and CR is described by a Vasicek distribution with total exposure X, uniform asset correlation ϱ, and average default probability p. Operational risk (OR) is assumed to be lognormally distributed and business risk (BR) is modelled by a normal distribution. The parameters for the distribution functions are chosen so that MR, CR, OR, and BR absorb 10, 61, 14, and 15 units of EC at 99.95 % confidence level. Finally, only credit risk and operational risk have non-zero expected losses of about 7.0 and 0.7, respectively.

3 Bayesian risk aggregation

3.1 Construction of the inter-risk-correlation prior

In the Bayesian approach for risk-type aggregation, one has to find a suitable prior for the inter-risk-correlation matrix R of the Gaussian copula. This prior quantifies the available
expert knowledge regarding the inter-risk-correlation matrix in probabilistic form. Since our example portfolio consists of \(d = 4 \) risk types, it is sufficient to consider \(4 \times 4 \) correlation matrices \(R \), which can be identified with a 6-dimensional real vector by

\[
R = \begin{pmatrix}
1 & r_1 & r_2 & r_3 \\
1 & r_4 & r_5 \\
1 & & r_6 \\
& & & 1 \\
\end{pmatrix} \quad \leftrightarrow (r_1, r_2, r_3, r_4, r_5, r_6), \quad r_i \in [-1, 1], \ 1 \leq i \leq 6. \tag{3.1}
\]

The most commonly used prior model for a covariance matrix \(\Sigma \) is the inverse-Wishart distribution, see e.g. Press [20]. Since every covariance matrix \(\Sigma \) is related to a correlation matrix \(R \) by

\[
\Sigma = S^{1/2} R S^{1/2}, \tag{3.2}
\]

where \(S = \text{diag}(\sigma_{11}, \sigma_{22}, \ldots) \) and \(\sigma_{jj} \) are the diagonal elements of \(\Sigma \), the inverse-Wishart prior can also be used to construct a prior for the correlation matrix.

The inverse-Wishart-based prior for the inter-risk-correlation matrix allows only for one single degrees of freedom parameter \(\nu \) to express prior beliefs (and thus the level of uncertainty) about \(R \). In practice, however, the amount of available expert information for different pair correlations \(r_i, i = 1, \ldots, 6 \), may significantly depend on the risk-type combinations. Another drawback of the inverse-Wishart distribution is that the resulting prior for \(R \) cannot easily be estimated by means of expert judgement. Note, that the prior distribution for \(R \) is calculated from the inverse-Wishart prior for \(\Sigma \) through transformation (3.2), which rarely yields a prior distribution that can easily be specified by expert elicitation. All this leads to the conclusion that the inverse-Wishart based prior is inadequate for our purpose and that we have to construct a more flexible prior for \(R \).

Thus we have decided to use a kind of “bottom-up” approach when building the prior distribution for the inter-risk-correlation matrix. In a first step, prior information for each component \(r_i, i = 1, \ldots, 6 \), of \(R \) is separately modelled by one-dimensional distributions with Lebesgue densities \(\pi_i(r_i), i = 1, \ldots, 6 \). This yields a distribution of symmetric, real-valued matrices with diagonal elements equal to one. In a second step we restrict to those matrices preserving the positive semidefiniteness of the correlation matrix. Hence, denoting the space of all 4-dimensional correlation matrices by \(\mathcal{R}^4 \), a possible density for the correlation matrix prior can be written as

\[
\pi(R) = \prod_{1 \leq i \leq 6} \pi_i(r_i) \mathbb{1}_{\{R \in \mathcal{R}^4\}}. \tag{3.3}
\]

The indicator function \(\mathbb{1}_{\{\cdot\}} \) ensures that the matrices are positive definite and thus are proper correlation matrices, and also introduces a dependence structure among the \(r_i \) for \(i = 1, \ldots, 6 \).
Pairwise correlation priors As we describe in more detail in Section 5, a well-established approach for the subjective determination of a prior density is by matching a given functional form. The shape of the prior reflects the amount and the quality of the available information and should match the experts’ beliefs as closely as possible.

As risk managers are concerned about unreasonable and possibly incorrect diversification benefits, it is normally assumed that correlations between different risk types are non-negative. Such a boundary condition for the correlation matrix can easily and naturally be modelled within the Bayesian framework by considering only pairwise priors π_i that have support in $[0,1]$.

Example 3.1. [Uniform prior]
Assume that the experts are totally uninformed about the possible values of the single pair correlations r_i for $i = 1, \ldots, 6$. Consequently, we may want to take all values of r_i as equally likely and, in consideration of the general restriction $r_i \in [0,1]$, a natural diffuse prior is the uniform distribution

$$
\pi_i(r_i) \propto \mathbb{I}_{\{0<r_i<1\}}, \quad i = 1, \ldots, 6.
$$

Note, however, that owing to the positive definiteness constraint of R the marginal priors for the individual correlations r_i resulting from (3.3) are not uniformly distributed anymore. See also Barnard, McCulloch, and Meng [1] for further discussion.

Example 3.2. [Beta distributed prior]
Suppose the pairwise correlations r_i follow a beta distribution,

$$
r_i \sim \text{Be}(\alpha_i, \beta_i), \quad i = 1, \ldots, 6,
$$

with hyperparameters $\alpha_i, \beta_i > 0$. This approach was also suggested by Gokhale & Press [13] to model the correlation coefficient in a bivariate normal distribution. The beta density is given by

$$
\text{Be}(r_i|\alpha_i, \beta_i) = \frac{r_i^{\alpha_i-1}(1-r_i)^{\beta_i-1}}{B(\alpha_i, \beta_i)}, \quad r_i \in [0,1], \quad (3.4)
$$

where $B(\cdot;\cdot)$ denotes the Euler beta function. The mean value and variance are given by

$$
\mu_i = \frac{\alpha_i}{\alpha_i + \beta_i},
\sigma_i^2 = \frac{\alpha_i\beta_i}{(\alpha_i + \beta_i)^2(1 + \alpha_i + \beta_i)}, \quad i = 1, \ldots, 6, \quad (3.5)
$$

which can be utilized to calculate the hyperparameters α_i, β_i by means of expert judgement, see Section 5.
Example 3.3. [Triangular distributed prior]

An alternative family of useful prior distributions for a correlation parameter is the symmetric triangular distribution giving values between α_i and β_i with $-1 \leq \alpha_i < \beta_i \leq 1$. Then, the prior density for all r_i, $i = 1, \ldots, 6$, is of the form

$$T(r_i|\alpha_i, \beta_i) = \frac{\beta_i - r_i}{(\beta_i - \alpha_i)^2} \mathbb{I}_{\{(\alpha_i + \beta_i)/2 < r_i \leq \beta_i\}} - \frac{\alpha_i - r_i}{(\beta_i - \alpha_i)^2} \mathbb{I}_{\{\alpha_i \leq r_i \leq (\alpha_i + \beta_i)/2\}}, \quad r_i \in \mathbb{R}. \tag{3.6}$$

Similarly to the previous example the mean and variance can be seen to be

$$\mu_i = \frac{\alpha_i + \beta_i}{2},$$

$$\sigma_i^2 = \frac{1}{24}(\alpha_i - \beta_i)^2, \quad i = 1, \ldots, 6. \tag{3.7}$$

In contrast to the beta distribution the support of the triangular distribution is not confined to the interval $[0, 1]$. So as to acknowledge the conservative assumption $r_i \in [0, 1]$, one can use a truncated version of the triangular distribution instead and the subsequent calculations can be done in a similar way.

Posterior for the correlation matrix

To construct the posterior distribution for the entire inter-risk-correlation matrix of a Gaussian copula, one has to combine the prior distribution (3.3) with the likelihood function (2.3) of the data (after transformation to standard normal marginals) according to Bayes theorem. One then obtains

$$p(R|\xi_1, \ldots, \xi_n) \propto \pi(R) l(R|\xi_1, \ldots, \xi_n)$$

$$\propto \det(R)^{-\frac{3}{2}n} \exp \left[-\frac{1}{2} \text{tr}(R^{-1}B) \right] \prod_{i=1}^{6} \pi_i(r_i) \mathbb{I}_{\{R \in \mathbb{R}^{n \times n}\}}, \tag{3.8}$$

where $\pi_i(\cdot)$ are the pairwise correlation priors which can, for instance, be chosen according to Examples 3.2 and 3.3.

3.2 Simulation of inter-risk-correlation matrices

The posterior distribution of the inter-risk-correlation matrix of a Gaussian copula as presented by (3.8) is not a standard distribution. Therefore, we apply MCMC methods to generate a sample of inter-risk-correlation matrices distributed according to $p(R|\xi_1, \ldots, \xi_n)$. MCMC methods entails repeated sampling from a Markov chain that converges to sampling from the posterior distribution, in our case (3.8). Established textbook references on MCMC are Gilks, Richardson, and Spiegelhalter [12], and Robert and Casella [21].
Gibbs sampling One possibility is to simultaneously simulate a 6-dimensional Markov chain of the vector of pair correlations \((r_{1}, \ldots, r_{6})\), e.g. by using a Metropolis-Hastings algorithm. This would necessitate a six-dimensional proposal distribution and our experience is that the convergence of the chain often becomes very slow, especially when more than only four risk types are considered. An alternative and convenient method is Gibbs sampling, which allows to circumvent high dimensionality by simulating componentwise using the full conditionals of \((3.8)\) with respect to all but one pair correlation \(r_{i}\). More precisely, up to a constant, the full conditional posterior distributions for \(i = 1, \ldots, 6\) can be written as

\[
p(r_{i} | r_{j}, i \neq j) \propto \det(R_{i}(r_{i}))^{-\frac{1}{2}} \exp \left[-\frac{1}{2} \text{tr}(R_{i}(r_{i})^{-1}B) \right] \pi_{i}(r_{i}) \mathbb{1}_{(r_{i} \in \mathbb{R}^{4})}, \quad r_{i} \in [0,1]\]

where \(R_{i}(\cdot) \equiv R(\cdot | r_{1}, \ldots, r_{i-1}, r_{i+1}, \ldots, r_{6})\) is the correlation matrix obtained from \(R\) by fixing all but the \(i\)-th pair correlations. These one-dimensional distributions are still complex and not at all standard. However, an independent Metropolis-Hastings algorithm where the proposal density is independent of the current chain value works quite well for our set-up, see details below.

The Gibbs sampler generates an autocorrelated Markov chain of vectors \((r_{1}^{(t)}, \ldots, r_{6}^{(t)})_{t=0,1,2,...}\) with stationary distribution \(p(R|\xi_{1}, \ldots, \xi_{n})\) given by equation (3.8). The updating of the \(t\)-th component of the chain to the \((t+1)\)-th component works componentwise by sampling from the one-dimensional full conditionals \((3.9)\):

1. \(r_{1}^{(t+1)} \sim p(r_{1} | r_{2}^{(t)}, r_{3}^{(t)}, \ldots, r_{6}^{(t)})\),
2. \(r_{2}^{(t+1)} \sim p(r_{2} | r_{1}^{(t+1)}, r_{3}^{(t)}, \ldots, r_{6}^{(t)})\),

 \vdots

6. \(r_{6}^{(t+1)} \sim p(r_{6} | r_{1}^{(t+1)}, r_{2}^{(t+1)}, \ldots, r_{5}^{(t+1)})\).

The Gibbs sampler converges in our situation by construction, see Section 10.2 of Robert and Casella [21]. Therefore, after a sufficiently long burn-in period of \(b\) iterations, the matrices \(R_{b<t\leq T}^{(t)}\) built from \((r_{1}^{(t)}, \ldots, r_{6}^{(t)})\) are approximately distributed according to the posterior \((3.8)\).

Metropolis-Hastings-within-Gibbs sampling The Gibbs algorithm above involves iterated sampling from the full conditional distributions, which in our case is done by an independent Metropolis-Hastings algorithm (see e.g. Robert and Casella [21], p. 276). Hence, the entire procedure may be referred to as a Metropolis-Hastings-within-Gibbs algorithm.
The Metropolis-Hastings algorithm requires an appropriate proposal density. In general, the Metropolis-Hastings algorithm works more successfully when the proposal density is at least approximately similar to the target density, i.e. the full conditionals (3.9). Assuming that the length \(n \) of the empirical time series is relatively short, we may suppose that the shape of the full conditional posteriors (3.9) are mainly impacted by the full conditionals of the correlation matrix priors, i.e. by

\[
\pi(r_i | r_j, i \neq j) \propto \pi_i(r_i) \mathbb{1}_{\{R_i(r_i) \in \mathbb{R}^4\}}, \quad i = 1, \ldots, 6, \quad r_i \in [0, 1].
\]

(3.10)

Therefore, when deploying the one-dimensional independent Metropolis-Hastings algorithm to sample from (3.9), it may be justified to chose the full conditionals (3.10) as proposal densities. An alternative proposal are uniform distributions. It should be mentioned that the question regarding which proposal distribution works best can only be answered in the context of the concrete data at hand. In our exercise below, we found that proposals of the form (3.10) are superior to a uniform distribution when beta distributed priors are used (Exercise 3.2). However, in case of triangular shaped priors (Exercise 3.3) either a uniform distribution or the full conditional priors are suitable proposal densities and lead to good convergence of the MCMC simulation (see Appendix 6.1).

When sampling \(r_i, i = 1, \ldots, 6 \), from (3.9) one has to account for the fact that the resulting matrix \(R \) must be positive semidefinite. In order to achieve a maximum computational efficiency, it would be good to know what values of \(r_i \), given all the other correlations \(r_j, j \neq i \), keep \(R \) positive semidefinite. Following Barnard et al. [1] we remark that the indicator function \(\mathbb{1}_{\{R_i(r_i) \in \mathbb{R}^4\}} \) whose evaluation involves computations of determinants can be rewritten as \(\mathbb{1}_{\{r_i \in [a_i(r_j, j \neq i), b_i(r_j, j \neq i)]\}} \) for all \(i = 1, \ldots, 6 \). Here, \(a_i(r_j, j \neq i) \) and \(b_i(r_j, j \neq i) \) are the roots of the two-grade polynomial \(\det(R_i(r_i)) = 0 \) with \(R_i(\cdot) \) as defined in (3.9). Therefore, sampling from the full conditionals (3.9) reduces to sampling from the related truncated distributions with a truncation intervals \([a_i(\cdot), b_i(\cdot)]\) that can easily be calculated in closed-form.

Before we specify the simulation algorithms for the two models of Examples 3.2 and 3.3, we should mention that our independent Metropolis-Hastings algorithm always converges due to compact support of proposal and posterior densities, cf. Theorem 7.8 of Robert and Casella [21].

Example 3.4. [Beta distributed prior (continued)]

We use the beta distributed pairwise priors introduced in Example 3.2 and thus the prior for the correlation matrix follows from (3.3) to be

\[
\pi(R) = \prod_{1 \leq i \leq 6} \text{Be}(r_i | \alpha_i, \beta_i) \mathbb{1}_{\{R \in \mathbb{R}^4\}}.
\]

(3.11)
As already mentioned above, we take as proposal distributions for the independent Metropolis-Hastings algorithm the full conditionals of (3.11), which can be written as

\[\pi(r_i | r_j, j \neq i) \propto \text{Be}(r_i | \alpha_i, \beta_i) \mathbb{I}_{(r_i \in [a_i(r_j, j \neq i), b_i(r_j, j \neq i))]}, \quad i = 1, \ldots, 6, \]

(3.12)

where \(a_i(\cdot) \) and \(b_i(\cdot) \) are the solutions to \(\det(R_i(r_i)) = 0 \). We now can specify the whole simulation algorithm as follows:

(I) Chose a starting correlation matrix \(R^{(0)} \leftarrow (r_1^{(0)}, \ldots, r_6^{(0)}) \) and set \(t = 0 \).

(II) Set \((z_1, \ldots, z_6) = (r_1^{(t)}, \ldots, r_6^{(t)})\). For \(i = 1, \ldots, 6 \) do:

1. Set \(k = 0, x^{(k)} = z_i \) and define \(R^i[\cdot] \equiv R[\cdot | z_j, j \neq i] \).

2. Generate a proposal \(y \sim \pi(\cdot | z_j, j \neq i) \) according to (3.12).

3. Calculate the update probability \(\delta \) as

\[
\delta = \min \left\{ 1, \det \left(\frac{R^i[y]}{R^i[x^{(k)}]} \right)^{-\frac{1}{2}} \exp \left[-\frac{1}{2} \text{tr} \left[(R^i[y]^{-1} - R^i[x^{(k)}]^{-1}) B \right] \right] \right\}.
\]

4. Take \(x^{(k+1)} = \begin{cases} y, & \text{with probability } \delta, \\ x^{(k)}, & \text{else.} \end{cases} \)

5. If \(k = I_{\text{MH}} - 1 \) then stop and set \(z_i = x^{(k+1)} \), else set \(k = k + 1 \) and go to (2).

(III) Set \((r_1^{(t+1)}, \ldots, r_6^{(t+1)}) = (z_1, \ldots, z_6)\).

If \(t = I_{\text{Gibbs}} - 1 \) then stop, else set \(t = t + 1 \) and go to (II).

\(I_{\text{Gibbs}} \) and \(I_{\text{MH}} \) determine the number of steps of the Gibbs sampler and the independent Metropolis-Hastings algorithms, respectively.

\[\square \]

Example 3.5. [Triangular distributed prior (continued)]

In case of the triangular priors (3.6) of Example 3.3 we decided to use uniformly distributed proposals. The simulation can be done using the following algorithm:

(I) Chose a starting correlation matrix \(R^{(0)} \leftarrow (r_1^{(0)}, \ldots, r_6^{(0)}) \) and set \(t = 0 \).

(II) Set \((z_1, \ldots, z_6) = (r_1^{(t)}, \ldots, r_6^{(t)})\). For \(i = 1, \ldots, 6 \) do:

1. Set \(k = 0, x^{(k)} = z_i \) and define \(R^i[\cdot] \equiv R[\cdot | z_j, j \neq i] \).

2. Generate a proposal \(y \sim \mathbb{I}_{\{r_i \in [a_i(z_j, j \neq i), b_i(z_j, j \neq i))\}} \).

3. Calculate the update probability \(\delta \) as

\[
\delta = \min \left\{ 1, \det \left(\frac{R^i[y]}{R^i[x^{(k)}]} \right)^{-\frac{1}{2}} \exp \left[-\frac{1}{2} \text{tr} \left[(R^i[y]^{-1} - R^i[x^{(k)}]^{-1}) B \right] \right] \right\} \frac{T(y | \alpha_i, \beta_i)}{T(x^{(k)} | \alpha_i, \beta_i)}.
\]
(4) Take \(x^{(k+1)} = \begin{cases}
 y, & \text{with probability } \delta, \\
 x^{(k)}, & \text{else.}
\end{cases} \)

(5) If \(k = I_{\text{MH}} - 1 \) then stop and set \(z_i = x^{(k+1)} \), else set \(k = k + 1 \) and go to (2).

(III) Set \((r^{(t+1)}_1, \ldots, r^{(t+1)}_6) = (z_1, \ldots, z_6)\).

If \(t = I_{\text{Gibbs}} - 1 \) then stop, else set \(t = t + 1 \) and go to (II).

\[\square \]

4 A simulation study of aggregated EC

We now illustrate our new approach by means of a fictitious numerical example. We assume that the empirical correlation matrix \(B \) of the Gaussian copula as defined in (2.4) is given by

\[
B = \begin{pmatrix}
MR & CR & OR & BR \\
MR & 1 & 0.66 & 0.30 & 0.58 \\
CR & 0.66 & 1 & 0.30 & 0.67 \\
OR & 0.30 & 0.30 & 1 & 0.60 \\
BR & 0.58 & 0.67 & 0.60 & 1
\end{pmatrix}, \tag{4.1}
\]

which are actually the benchmark inter-risk correlations reported in the IFRI/CRO survey [15], Figure 10. This matrix was also used in the simulation study in Böcker [5]. Since this matrix is not derived from actual risk proxy data, we have to assume a fictitious value for the time series length \(n \) in the likelihood function (2.3). We chose it to be \(n = 10 \), think e.g. of 2.5 years of quarterly data.

In addition to the empirical information above we assume subjective prior knowledge in order to completely specify the posterior distribution (3.8). Let us suppose that expert elicitation as explained in Section 5 has been performed to estimate the mean values \(\mu_i \) and standard deviations \(\sigma_i \) of all pair correlations \(r_i, i = 1, \ldots, 6 \), which by relationships (3.5) and (3.7) can be used to compute the hyperparameters \(\alpha_i \) and \(\beta_i \). The assumed outcome of the expert judgement is shown in Table 4.3 for all six pair correlations. In addition, Figures 4 and 5 in the Appendix depict also the prior densities parameterised according to Table 4.3 together with the empirical estimates (4.1).

For the simulation of the posterior distribution of the inter-risk-correlation matrix we ran the algorithms described in Examples 3.4 and 3.5 for the beta and the triangular model, respectively. The starting value \(R^{(0)} \) is chosen as the empirical matrix (4.1). Furthermore, for the triangular (beta) model we set \(I_{\text{MH}} = 1,000 \) (1,000) for each Metropolis-Hastings step within the Gibbs algorithm and \(I_{\text{Gibbs}} = 100,000 \) (300,000). In the triangular model we used only the last 9,000 iterations of the chain for posterior analysis and
<table>
<thead>
<tr>
<th>i</th>
<th>Correlations</th>
<th>Moments</th>
<th>Triangular priors</th>
<th>Beta priors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MR-CR</td>
<td>0.58</td>
<td>0.416</td>
<td>30.894</td>
</tr>
<tr>
<td>2</td>
<td>MR-OR</td>
<td>0.35</td>
<td>0.203</td>
<td>21.768</td>
</tr>
<tr>
<td>3</td>
<td>MR-BR</td>
<td>0.65</td>
<td>0.491</td>
<td>34.350</td>
</tr>
<tr>
<td>4</td>
<td>CR-OR</td>
<td>0.25</td>
<td>0.103</td>
<td>12.771</td>
</tr>
<tr>
<td>5</td>
<td>CR-BR</td>
<td>0.6</td>
<td>0.436</td>
<td>31.478</td>
</tr>
<tr>
<td>6</td>
<td>OR-BR</td>
<td>0.68</td>
<td>0.516</td>
<td>32.282</td>
</tr>
</tbody>
</table>

Table 4.3: Mean values and standard deviations for the six pair correlations r_i, $i = 1, \ldots, 6$, as it could be obtained by expert judgement. The associated hyperparameters (α_i, β_i) for the beta model of Example 3.2 and the triangular model of Example 3.3 are derived from (3.5) and (3.7), respectively.

<table>
<thead>
<tr>
<th></th>
<th>MR-CR</th>
<th>MR-OR</th>
<th>MR-BR</th>
<th>CR-OR</th>
<th>CR-BR</th>
<th>OR-BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>0.590</td>
<td>0.347</td>
<td>0.667</td>
<td>0.240</td>
<td>0.623</td>
<td>0.718</td>
</tr>
<tr>
<td>Posterior Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posterior Std.</td>
<td>0.066</td>
<td>0.059</td>
<td>0.062</td>
<td>0.059</td>
<td>0.064</td>
<td>0.058</td>
</tr>
<tr>
<td>Triangular</td>
<td>0.595</td>
<td>0.346</td>
<td>0.677</td>
<td>0.237</td>
<td>0.628</td>
<td>0.721</td>
</tr>
<tr>
<td>Posterior Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posterior Std.</td>
<td>0.068</td>
<td>0.062</td>
<td>0.065</td>
<td>0.062</td>
<td>0.067</td>
<td>0.061</td>
</tr>
</tbody>
</table>

Table 4.4: Mean values and standard deviations of the simulated marginal posterior distributions for the six pair correlations r_i, $i = 1, \ldots, 6$.

aggregating EC. In case of the beta model, we first took the last 27,000 iterations from which we then picked only every third value in order to reduce autocorrelation of the chain. Hence, in both models we finally came up with 9,000 inter-risk-correlation matrices sampled from the posterior distribution. Further remarks on convergence diagnostics of our method can be found in the Appendix.

Table 4.4 shows the mean values and the standard deviations of the marginal posterior distributions. The posterior means are different from the pure empirical estimates given in (4.1) because of the additional consideration of expert prior knowledge. Moreover, we see that in our case the two different prior models seem to have only little influence on the posterior distributions. Figures 4 and 5 graphically compare the marginal posterior distributions obtained from the proposed MCMC algorithm with the pairwise prior distributions both for the beta and triangular model.

To aggregate EC we now use the Gaussian copula model, however, instead of applying a fixed correlation matrix (such as B in (4.1)) we use different correlation matrices randomly selected from the simulated Markov chain (after discarding the burn-in sample). In doing so, we are able to take the uncertainty of the inter-risk-correlation matrix correctly into
Aggregated Economic Capital at 99.95 % CL (Gaussian copula model)

<table>
<thead>
<tr>
<th>Sum</th>
<th>Fixed correlation B</th>
<th>Beta prior model</th>
<th>Triangular prior model</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>79.57</td>
<td>77.88</td>
<td>77.81</td>
</tr>
</tbody>
</table>

Table 4.5: Aggregated EC at confidence level of 99.95 % and time horizon of one year for a standard Gaussian copula model with fixed matrix, and the Bayesian copula models with either beta or triangular priors as described in the text. The portfolio consisting of market, credit, operational, and business risk is specified in Table 2.2.

Figure 1: Histograms for the aggregated EC at confidence level of 99 % for the beta model (left) and the triangular model (right). The posterior mean and the 95 % percent credible interval can be calculated to 37.89 [36.63, 39.24] and 37.90 [36.59, 39.27] for the beta and triangular model, respectively, corresponding to a relative uncertainty of the aggregated EC of about 7 %.

account. Results for the beta and triangular prior models as well as for the “standard” approach using one fixed matrix B are given in Table 4.5. The posterior distribution of the inter-risk-correlation matrix implies also a posterior distribution for the aggregated EC which can be used to analyse the uncertainty of a bank’s aggregated EC figure and thus also the diversification benefit due to risk-type dependence. Particularly useful are graphical methods that depict the posterior density of the aggregated EC at confidence level κ, denoted by \(p_{EC(\kappa)}(\cdot) \), e.g. histograms (as shown in Figure 1) or “uncertainty” plots like in Figure 2. The latter illustrates the density \(p_{EC(\kappa)}(\cdot) \) as a function of the confidence level κ by means of a gray-level intensity plot. Other useful measures of uncertainty are credible intervals, which are direct probability statements about model parameters or functions of it given the observed data (see e.g. Berger [4]). We calculated the 95 % percent
credible interval for the EC distributions given in Figure 1. In case of the beta priors we obtain [36.63, 39.24] and for the triangular shaped priors a calculation yields [36.59, 39.27]. Obviously, in our numerical example, one can see from Table 4.5 and Figure 1 that the impact of differently shaped priors (with equal means and standard deviations, however) on the aggregated EC can be neglected.

5 Expert judgement and subjective prior assessment

This Section is devoted to the selection of appropriate prior distributions for the correlation matrix R of the Gaussian copula. In typical risk-aggregation problems data are scarce and therefore it is worthwhile to study how available subjective information or prior beliefs about inter-risk correlations can be accounted for in a formal and sound way.

The necessity for expert judgement Clearly, if almost perfect empirical data were available (e.g. complete, reliable, and representative risk-proxy time series for each risk type) then it would be acceptable to rely only on statistical correlation estimates to approximate inter-risk dependence. Unfortunately, in practice it is often extremely difficult to identify and gather high-quality risk proxies for each risk type making the estimation
of inter-risk correlations a tricky exercise.

There are several reasons for these difficulties. First, there is the question regarding internal versus external data. The general opinion is that risk proxies should be derived from bank-internal data because it is more related to the companies’s specific business strategy. However, internal time series may be hard to come by or difficult to re-build after a merger or a company’s re-organisation, resulting in quite short risk-proxy time series reducing the statistical significance of correlation estimates. A consequence thereof is that bank-internal proxies are often amended by external data, at least for some risk types. Another problem is to find a common frequency that provides a natural scale for all risk types. Usually, risk proxies for different risk types are measured at unequal time intervals and therefore further assumptions and approximations have to be used to make risk proxies comparable. For example, market risk data are available at a daily basis whereas proxies for business risk are often based on accounting information and therefore exist only at quarterly or even yearly level, creating a bottleneck for statistical correlation estimation.

These drawbacks of a purely statistical analysis based on risk proxies show that it is often necessary to include a new dimension, namely expert judgement. The usage of some kind of judgemental approaches when assessing inter-risk correlations is very popular in the banking industry, however, most of the employed approaches lack a sound scientific basis. For instance, the widely used method of “ex-post adjustments” of the statistical correlation estimates cannot be properly formalised, thereby nourishing fears and doubts concerning the final figures.

In contrast to this, a Bayesian approach for risk aggregation such as we are proposing here allows to treat empirical data on the one hand and expert knowledge on the other as two distinct sources of information that are eventually amalgamated by means of Bayes theorem. In this way it is possible to exploit at the maximum extent both information sets without contamination effects (i.e. experts that are biased (“anchored”) by the data and, vice versa, data that is manipulated by the expert).

The Bayesian choice for risk aggregation means that the experts’ beliefs about the association between different risk types have to be encoded in the pairwise correlation priors \(\pi_i(\cdot) \) for \(i = 1, \ldots, 6 \), introduced in Section 3.1. This process is referred to as elicitation of the prior distributions. Elicitation is a difficult task and a number of different competencies are required to perform it correctly, not only from a statistical point of view but also on the psychological side. A readable textbook on this intriguing subject is O’Hagan et al. [19]. Without going into detail, we want to mention that people are typically employing only a few strategies or heuristics to quantify uncertainty or to make decisions under uncertainty, see e.g. Tversky & Kahneman [25]. Consequently, the way questions
are asked and how answers are interpreted by the facilitator is crucial, in particular, it is advisable to collect expert judgements stemming from different elicitation approaches to be able to double check their internal consistency. Therefore, our suggestion here is to elicit pairwise correlations by asking questions about the following three kind of variables, which then can be used to compute the related copula parameters.

(1) Kendall’s tau rank correlations between two distinct risk types,
(2) conditional loss probabilities between two distinct risk types,
(3) joint loss probabilities between two distinct risk types.

Since we elicit single pair correlations we do not account for positive semidefiniteness of the entire correlation matrix. As explained in Section 3.1 this is done within the MCMC algorithm.

Correlation elicitation using Kendall’s tau Asking experts to quantify an inter-risk correlation directly is not a trivial task. Direct assessment of a dependence measure implies deep knowledge of the relative behaviour of each pair of variables or, in our case, of two risk types. Moreover, direct estimation of a correlation coefficient should be supported by a thorough explanation of which kind of measure one actually is interested in.

The most common correlation measure used in practice is Pearson’s linear correlation coefficient. However, it is well-known that this measure is not consistent with Gaussian copula risk aggregation unless the joint risk-type distribution is multivariate elliptical, see e.g. Embrechts, McNeil & Straumann [11]. Furthermore, it is by far not clear whether Pearson’s linear correlation is really the kind of association measure people are thinking of when being asked about “correlations”. With this respect, our main concern is that the linear correlation \(\text{corr}(X, Y) \) between two risk types \(X \) and \(Y \) depends not only on their dependence structure but also on the specific form of the marginal distribution functions \(F_X \) and \(F_Y \). Therefore, experts will only interpret and estimate a linear correlation correctly if they also account for the specific marginal distribution functions assumed for \(X \) and \(Y \). Another problem is the counter-intuitive fact that for given risk-type marginals \(F_X \) and \(F_Y \) the attainable correlations lie, in general, in a subinterval of \([-1, 1]\). All these problems have to be clarified before beginning the elicitation experiment since naive, ambiguous questions about some kind of risk-type “correlation” may lead the expert to give an answer biased by her cognitive notion of correlation that probably significantly differs from the Gaussian copula parameter we are actually interested in.

A possible loophole is an alternative concept of association, namely that of Kendall’s tau rank correlation \(\tau \), which is particularly useful when—as in our case—a multivariate elliptical problem is assumed, cf. for instance Embrechts, Lindskog & McNeil [10], and
with an application to risk-type aggregation and elicitation Böcker [5]. The benefit for expert elicitation is due to a relationship between Kendall’s tau \(\tau_i \) and the associated Gaussian copula parameter \(r_i \), which holds true for essentially all elliptical distributions, namely

\[
 r_i = \sin(\pi \tau_i / 2), \quad i = 1, \ldots, 6.
\]

Recall that \(\tau_i \in [-1, 1] \), with \(\tau_i = 1, -1 \) for complete positive (negative) dependence, and \(\tau_i = 0 \) for independent risk types. Our suggestion is now to ask experts about their correlation estimates within an interval \([-1, 1]\) where \(\tau_i = \{-1, 0, 1\} \) can be used as anchors helping experts to calibrate their answers. Finally, the elicited value for \(\tau_i \) can be transformed to the copula parameter \(r_i \) by means of (5.1).

Correlation elicitation using conditional and joint probabilities The correlation assessment described above requires the expert to think about two random variables simultaneously, i.e. it is a bivariate elicitation problem. A natural way to lower the complexity of the elicitation procedure is to reduce it to a univariate space. Specifically, it has been argued in Gokhale & Press [13] or O’Hagan et al. [19] that one-dimensional problems are more feasible for expert judgement as experts elicit univariate variables with a higher degree of accuracy.

Correlation elicitation by means of indirect questions about conditional and joint probabilities was already described in Böcker [5] so that here we only briefly summarise the main results. First note that if \(d \) risk types are jointly distributed with a Gaussian copula with correlation matrix \((R_{ij})_{ij}, i, j = 1, \ldots, d\), any two risk types \(l \) and \(m \) \((m \neq l)\) are coupled by a Gaussian copula with correlation parameter \(R_{lm} \). Hence it is sufficient to consider the bivariate estimation problem.

For two risk-type variables \(X \) and \(Y \) (and the definition that losses are positive) we can express their joint survival probability as

\[
 P(X > x, Y > y) = 1 - P(X \leq x) - P(Y \leq y) + P(X \leq x, Y \leq y) = 1 - F_X(x) - F_Y(y) + C_R(F_X(x), F_Y(y)), \quad x, y > 0,
\]

where \(F_X \) and \(F_Y \) are the marginal distribution functions of \(X \) and \(Y \), respectively, and \(C_R(\cdot, \cdot) \) is a bivariate Gaussian copula with unknown parameter \(R \). Similarly, one may consider conditional loss probabilities of the form

\[
 P(X > x | Y > y) = \frac{P(Y > y, X > x)}{P(Y > y)}, \quad x, y > 0,
\]

which depend on the copula correlation \(R \) via (5.2). Our strategy is now to elicit such joint and conditional probabilities for different threshold values of \(x \) and \(y \). Since we assume
that the marginal distribution functions F_X and F_Y are known and already completely parameterised, one can use relationships (5.2) and (5.3) to determine the copula correlation R, usually by numerical or graphical methods.

The result of the entire expert elicitation program is that for each pairwise correlation $r_i, i = 1, \ldots, 6$, one obtains a sample $r_i^* := \{r_{i1}^*, \ldots, r_{iN_i}^*\}$ of N_i expert estimates. The elicited values r_i^* may arise from one expert who was confronted with all of the three approaches suggested above, or may reflect different opinions about risk-type dependence stemming from several different experts. Now, the experts’ point estimates $r_i^*, i = 1, \ldots, 6$, can be used to determine the hyperparameters of the pairwise correlation priors $\pi_i(\cdot), i = 1, \ldots, 6$. For the beta and triangular models these are only two parameters α_i and β_i for each pair correlation. Therefore, a viable approach is moment matching because, as shown in Examples 3.2 and 3.3, we only need to decide about the prior means and variances to fully determine all $\pi_i(\cdot), i = 1, \ldots, 6$. This approach is illustrated in Figure 3.
6 Appendix

6.1 Convergence analysis

As pointed out before, we already know that the algorithm converges theoretically. The question which must still be answered is if the chain length is long enough. First, we remark that even if we would took only one iteration in the Metropolis-Hastings algorithm, the Gibbs sampler would still converge, see Müller [17] and [18]. However our considerations showed that the Gibbs convergence is faster if we use 1000 iterations of the Metropolis-Hastings parts.

If we consider now the full chain \((R^{(t)})_{0 \leq t \leq I_{Gibbs}}\) generated by the algorithm of Section 3.2, we can monitor the convergence by analysing the series \(\sum_{t=0}^{I_{Gibbs}} \det(R^{(t)})\) for \(0 \leq s \leq I_{Gibbs}\). This is a standard test procedure for MCMC methods, see e.g. Sections 7 and 10 of Robert and Casella [21]. The results for our chains were quite fine and supported the assumption that a burn-in period of 10 percent of the chain is a good choice.

Second, we applied the Durbin-Watson test to check for autocorrelation in the chain. If there is not any, the value of the corresponding statistic should be around 2. However, in order to be able to use this test in our high-dimensional situation we applied the following trick: If two random variables \(A\) and \(B\) are independent and if the function \(f\) is defined and measurable on the image of \(A\) and \(B\), then \(f(A)\) and \(f(B)\) are also independent. Choosing \(f(\cdot) = \det(\cdot)\) we then investigated the autocorrelation of the transformed chain \(\det(R^{(t)})_{0 \leq t \leq I_{Gibbs}}\).

For the triangular model the Durbin-Watson statistic was about 1.84, which is good enough to assume that there is no autocorrelation in the chain. When considering the chain of the beta model, the analysis yielded a Durbin-Watson statistic of 1.43, indicating considerable autocorrelation of the chain. Therefore we took only every third value of the Markov chain to reduce the observed autocorrelation (resulting in a Durbin-Watson statistic of about 1.94).

6.2 Figures of the posterior distributions

Figures 4 and 5 we illustrate the marginal posterior distributions of all risk-type correlations \(r_i, i = 1, \ldots, 6\) by means of histograms. Additionally, for each pair correlation the beta or triangular prior distribution is depicted as a solid line.
Figure 4: Histograms of the simulated marginal posterior distributions for the six pair correlations $r_i, i = 1, \ldots, 6,$ when the pairwise priors are beta distributed according to Example 3.2. The solid graphs are the pairwise prior distributions and the dotted lines indicate the empirical correlations of (4.1).
Figure 5: Histograms of the simulated marginal posterior distributions for the six pair correlations \(r_i, i = 1, \ldots, 6 \), when the pairwise priors are triangular distributed according to Example 3.3. The solid graphs are the pairwise prior distributions and the dotted lines indicate the empirical correlations of (4.1).
References

