Risk-Adjusted Underwriting Performance Measurement

Yingjie Zhang
CNA Insurance Companies
333 South Wabash 30S, Chicago, IL 60604, USA
Email: yingjie.zhang@cna.com

Abstract
To measure economic profits generated by an insurance policy during its life time, we compare the terminal assets of the policy account with certain breakeven value. Policies with mutil-year loss payments and income tax payments are studied. The breakeven value of terminal assets is given in closed form, and shown to be an increasing function of the claims risk and the asset investment risk. Profits from underwriting and from capital investment are measured separately. Simple equations are found that link the cost of capital to the risk-adjusted loss discount rate. Methods developed in the paper are also useful for fair premium calculation.

Keywords
Risk-adjusted performance measure, risk-adjusted discount rate, policy-year profit, cost of capital, EVA, fair premium

1 Introduction
A typical property-casualty insurance policy covers one accident year, but its claims stay open for many years. The ultimate profitability of the policy cannot be determined until all claims are settled. In the interim, profits may be estimated by projecting future investment gains and loss and expense payments. At the moment the premium is collected, a policy account is established, whose initial asset is the premium net of acquisition expenses. The value of the asset increases as investment incomes accumulate, and decreases as losses, expenses and taxes are paid. At the end of the policy life, the terminal asset of the policy account is the ultimate profit generated by the policy. A policy is considered profitable, if its terminal asset exceeds a certain breakeven value. A main goal of the paper is to calculate this breakeven value.
A number of favorable factors allow a policy to generate positive profits. These include higher premiums collected, lower losses and expenses paid, payments made later rather than sooner, and extraordinary investment gains. If all these factors are at their fair or expected values, the resulting terminal asset is the breakeven terminal asset. Modern finance teaches that the expected return of an asset investment is in direct proportion to the investment’s risk. Likewise, the breakeven terminal asset will be shown directly related to the claims risk and the asset investment risk.

For investment portfolios, there are many risk-adjusted performance measures, well-known among which are the Sharpe ratio, the Treynor ratio (these are ratio-based tests), and Jensen’s alpha (this is a value-based test), all thoroughly discussed in Part 7 of Bodie et al. (2002). In insurance, the risk-adjusted return on capital (RAROC) and the economic value added (EVA) have become popular. All these measures, however, are designed for testing performances in one time period. It is much harder to construct a performance test for a real insurance policy, whose claim payments span across multiple years. The RAROC and the EVA are usually applied on the calendar-year basis, thus cannot answer the question whether a policy (or a policy year) is ultimately profitable. The internal rate of return (IRR) of equity flows is a valid policy-year metric. Yet it cannot be called a risk-adjusted measure unless it is explicitly linked to the underwriting and investment risks. Such a link will be discussed in this paper. Further, the RAROC, IRR and EVA all measure total profits from both underwriting and investment operations. It is useful for the underwriting managers to know if the underwriting operation alone, for a particular policy or in a particular year, is successful. Our approach will address this issue directly.

Few research papers have centered on the economic performance of a multi-year property-casualty (P&C) policy. Among them Schirmacher and Feldblum (2006) is a noticeable one. It uses a numerical example to examine how profits emerge over time. It shows that calendar-year profits depend on accounting system. Our concern here is on the ultimate economic profit, which is independent of the accounting system used. In computing the EVA, Schirmacher and Feldblum (2006) assumes that a cost of capital (COC) is given extraneously. As just mentioned, we will relate it to internal risk metrics.

Profit measurement is intertwined with fair premium determination. The

1 Some one-year tests have been adapted for use in a multi-year framework and on the policy-year basis, see Goldfarb (2006). But these are only tentative solutions and lack solid theoretical support.
breakeven level of profit is produced by assuming that the premium is at its fair level, and investment returns and loss and expense payments are all at their expected values. Conversely, the fair premium may be determined by setting to zero the market value of the policy account terminal asset. Our study thus may be found useful for premium calculation.

The paper is organized as follows. Section 2 starts with a discussion of the risk-adjusted loss discount rate. The discount rate is used to quantify a policy’s risk. Then, for a single-year model, the breakeven value of terminal assets is derived. The breakeven value is an increasing function of asset and claims risks. This result is generalized to a multi-year model in Section 3. Here a numerical example is introduced that will be used throughout the paper to illustrate calculations. The main results of the paper are stated in Section 4. Income tax is brought into the model. Closed-form formulas are derived for the fair premium and breakeven terminal assets. To obtain tractable results, tax rules are simplified. In Section 5, we give equations linking the breakeven terminal assets to the COC. A consequence of the relationship is that the COC is an increasing function of the claims risk, and a decreasing function of the initial capital. In Section 6, we show how to define the EVA for the policy account only, and separately measure profits from underwriting and from capital investment. Section 7 further shows that, since the loss discount rate and the COC both characterize the internal risk of the company (assuming investments are risk-free), each can be derived from the other with simple equations. The fair premium for a policy may be calculated by selecting either a loss discount rate or a target COC. Section 8 concludes the paper.

2 Benchmark of Underwriting Profit

Issuing an insurance policy establishes a mini-bank, which we will call a policy account. The starting asset of a policy account is premium minus acquisition expenses. The value of the asset then changes in time. Investment gains increase the value, and loss and expense payments decrease it. The remaining assets right after the last payment is made are called the terminal assets. Actuaries that have done analysis on finite reinsurance should be familiar with the calculation of terminal assets. For a policy to be profitable over its lifetime, the terminal assets must be positive and sufficiently high. Intuitively, the more risky the policy, the greater the terminal assets need to be. The purpose of this paper is to derive a benchmark for terminal assets in the framework of modern finance.
2.1 Discount Rate for Liabilities

Pricing actuaries use various “loadings” to quantify claims risk of a policy. Loadings may be additive or multiplicative, or may be calculated by risk adjusted discounting. One approach may be easier to apply than another in a given situation, but they are all equivalent mathematically. The most convenient way for presenting out results is risk adjusted discounting.

The following example illustrates how the risk adjusted discount rate reflects the risk level of a policy. Assume a policy has only one loss which will be paid in one year, and the expected payment is $100. The risk free interest rate is 4%. The fair premium for the policy is the sum of market values of future claims, expenses, and capital costs. If the claim amount is $100 certain, its market value is the risk free present value $100/1.04 = 96.15$. Market value of a claim increases with riskiness of the claim, whereas the risk adjusted discount rate decreases. Table 1 shows the risk adjusted rates implied in the market value, with different levels of claims risk.

Table 1: Risk-Adjusted Discount Rate

<table>
<thead>
<tr>
<th>Riskiness of Claim</th>
<th>Expected Claim Value</th>
<th>Risk free Discount Rate</th>
<th>Market Value</th>
<th>Risk-Adjusted Discount Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Risk</td>
<td>100.00</td>
<td>96.15</td>
<td>96.15</td>
<td>4%</td>
</tr>
<tr>
<td>Low Risk</td>
<td>100.00</td>
<td>96.15</td>
<td>97.09</td>
<td>3%</td>
</tr>
<tr>
<td>High Risk</td>
<td>100.00</td>
<td>96.15</td>
<td>200.00</td>
<td>−50%</td>
</tr>
</tbody>
</table>

(5) = (2)/(4) − (1)

In general, let r_f be the risk free rate, L the random claim amount, and r_l the claim’s risk adjusted discount rate. Then the risk free present value $\text{PV}(L) = E[L]/(1 + r_f)$, and the market value $\text{MV}(L) = E[L]/(1 + r_l)$. For a risky claim, $\text{MV}(L) > \text{PV}(L)$, the difference being the claim’s risk margin. This implies

This fair premium formula is derived from the net present value principle in finance. A well-known early paper that advocates it is Myers and Cohn (1987). It is now a standard assumption in theoretical research. Its use in actual pricing is somewhat limited by lack of method for calculating market value of future claims.

Although it is intuitively clear that if a claim is risky, its value should contain a positive risk margin, empirical evidence that supports the assertion is sparse. Most authors assume the risk margin is positive (Myers and Cohn 1987, Bingham 2000). But Feldblum (2006) suggests that...
$r_l < r_f$. If risk is low, r_l is close to r_f. For a highly risky policy, r_l approaches -1.

2.2 Breakeven Terminal Assets

Let p be a policy premium net of acquisition expenses. Then p is the starting balance of the policy account. Assume the balance is invested in a financial security whose annual return is a random variable R_a; the policy losses L, paid one year later, has a risk adjusted discount rate of r_l. So the expected return of assets is $r_a = E[R_a]$, and the market value of loss is $MV(L) = E[L]/(1 + r_l)$. Capital cost is not considered in this section.

If the fair premium is charged, then $p = MV(L) = E[L]/(1 + r_l)$. At the end of the year the assets grow to $MV(L)(1 + R_a) = E[L](1 + R_a)/(1 + r_l)$. After loss L is paid, the terminal assets are

$$A_1 = MV(L)(1 + R_a) - L$$

The expected value of terminal assets is

$$a_1 = E[A_1] = MV(L)(1 + r_a) - E[L] = MV(L)(r_a - r_l) = \frac{E[L]}{1 + r_l}(r_a - r_l) \quad (2.1)$$

Since $r_a \geq r_f$ and $r_l \leq r_f$, $a_1 \geq 0$. A more risky security has a greater r_a, and a more risky liability has a smaller r_l. So the spread $r_a - r_l$ is a measure of total risk of the policy account. a_1 is in proportion to the total risk.

a_1 is the risk-adjusted breakeven value of terminal assets. If the actual realized terminal assets are greater than a_1, the company makes money on the policy. If the terminal assets are only slightly positive, but less than a_1, the company appears to make money, but actually does not make enough to compensate for risk. If the claim or the investment is very risky, the terminal assets need to be very high.

Comparing the actual terminal assets with a_1 gives us a value-based test for underwriting performance. It is interesting to compare this with the combined ratio, a ratio-based underwriting performance measure. The undiscounted combined ratio is used most often. But it has an obvious shortcoming—it does not reflect the time value of money. Two lines of business may have the same combined ratio, but the longer tailed line pays out losses more slowly, generates more investment income along the way, and is more profitable. The economic combined

most P&C liabilities have no systematic risk (i.e., uncorrelated with the market return), thus the risk margin equals zero. The disagreement can only be settled with future empirical research.

4 Terminal assets are profits generated by the policy over its lifetime. I choose to use “assets” rather than “profits” because, for a multi-year model, I will keep track of values of assets from year to year.
ratio (ECR) is introduced to correct this problem. In the calculation of ECR all underwriting cash flows are discounted, at the risk free rate, to the time of policy inception. The ECR is strongly advocated in \textit{Swiss Re} (2006), which claims that the ECR of 100% “truly indicates the watershed between profit and loss” (page 24). When investments and claims are risky, however, the risk-adjusted breakeven ECR is not 100%, but something lower. Table 2 gives the breakeven ECR and the breakeven terminal assets for the three policies in Table 1, with the following additional assumptions: first, fair premium is charged and there is no expense, i.e., $p = \text{MV}(L)$; and second, investment is riskless, i.e., $r_a = r_f = 4\%$.

Table 2: Breakeven ECR and Breakeven Terminal Assets

<table>
<thead>
<tr>
<th>Riskiness of Claim</th>
<th>$E[L]$</th>
<th>r_t</th>
<th>$p = \text{MV}(L)$</th>
<th>$\text{PV}(L)$</th>
<th>ECR</th>
<th>a_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Risk</td>
<td>100.00</td>
<td>4%</td>
<td>96.15</td>
<td>96.15</td>
<td>100.0%</td>
<td>0.00</td>
</tr>
<tr>
<td>Low Risk</td>
<td>100.00</td>
<td>3%</td>
<td>97.09</td>
<td>96.15</td>
<td>99.0%</td>
<td>0.97</td>
</tr>
<tr>
<td>High Risk</td>
<td>100.00</td>
<td>-50%</td>
<td>200.00</td>
<td>96.15</td>
<td>48.1%</td>
<td>108.00</td>
</tr>
</tbody>
</table>

$(6) = (5)/(4)$

$(7) = (4) \times (4\% - (3))$

The ECRs in Table 2 are computed with the fair premium in the denominator. So they are the breakeven ECRs. The table shows if claims risk is high, the breakeven ECR is much lower than 100%, and a_1 is very large compared to $E[L]$.

3 Multi-Year Underwriting Profit Measure

3.1 Breakeven Terminal Assets a_n

A typical P&C policy has a multi-year payout pattern. Assume a policy is written at time 0, and the loss payments are random variables L_1, \ldots, L_n, L_i paid at time i. The nominal total loss is $L = L_1 + \ldots + L_n$. We will derive a breakeven value for terminal assets at time n, after all losses are paid. Assume a loss discount rate r_t, constant throughout the n years, can be found that correctly reflects the risk of the payments L_i’s. Then the market value, at time 0, of the payments is

$$
\text{MV}_0(L) = \frac{E[L_1]}{1 + r_t} + \ldots + \frac{E[L_n]}{(1 + r_t)^n} = \sum_{i=1}^{n} \frac{E[L_i]}{(1 + r_t)^i}
$$

(3.1)
The fair premium of the policy, net of expenses, equals this market value:
\[p = MV_0(L) \] Let the premium be invested risk free, and \(r_f \) be the constant risk free rate. The following formulas give the expected net assets at each time \(i \), after loss \(L_i \) is paid

\[
\begin{align*}
 a_1 &= p(1 + r_f) - E[L_1] \\
 a_2 &= p(1 + r_f)^2 - E[L_1](1 + r_f) - E[L_2] \\
 &\vdots \\
 a_n &= p(1 + r_f)^n - E[L_1](1 + r_f)^{n-1} - \ldots - E[L_n]
\end{align*}
\]

\(a_n \) is the expected (benchmark) terminal assets of the policy. Substituting equation (3.1) for \(p \) in the last formula, we get

\[
a_n = (1 + r_f)^n \sum_{i=1}^{n} E[L_i] \left((1 + r_l)^{-i} - (1 + r_f)^{-i} \right) \tag{3.2}
\]

\[
a_n = (1 + r_f)^n (MV_0(L) - PV_0(L)) \tag{3.3}
\]

\(MV_0(L) - PV_0(L) \) is the risk margin of the policy losses, which is greater than 0 if \(r_l < r_f \). A less risky policy has a smaller spread \(r_f - r_l \), and a relatively smaller \(a_n \). A very risky policy can have a negative \(r_l \), and a very large \(a_n \).

\(a_n \) is a function of expected values of loss payments, investment rates and discount rates. These expected values are generally forecasted at the beginning of the policy term, when an initial \(a_n \) can be computed. \(a_n \) may be revised later as new information about the claims, markets and general economy comes in. But it should not be affected by normal fluctuations in loss payments and investment returns. Final assessment of a policy’s profitability has to wait until the end of year \(n \), when the actual terminal assets can be calculated. But an interim estimate may be performed by projecting future actual loss payments and investment returns. A number of beneficial factors can render a policy profitable: higher (than expected) premium, smaller losses, slower loss payments, or higher investment returns. Among them the premium is what a company has the most control over.

3.2 A Numerical Example

I will use a multi-year numerical example to illustrate the calculations in this paper. The example is borrowed from Schirmacher and Feldblum (2006), so we

For simplicity, results on multi-year models in this paper are stated for risk free investment returns. With little additional work, they can be generalized to random (risky) investments, as long as the investment returns in different time-periods are independent.
can compare their methods with ours. Assume a policy is issued on Dec. 31, 20XX, for accident year 20XX+1. The underwriting cash flows are as follows. On Dec. 31, 20XX (time 0), a premium of $1000 is collected and acquisition expenses of $275 paid. General expenses of $150 are paid six months later (time 0.5). The policyholder has one accident in the year and will receive one payment of $650 on Dec. 31, 20XX+3 (time 3).

Schirmacher and Feldblum (2006) choose a surplus requirement of 25% of the unearned premium reserve plus 15% of the loss reserve. The risk free rate is 8% per year compounded semi-annually (4% per half year). The basic policy cash flows are summarized in Table 3.

Table 3: Policy Account Assets - No Tax

<table>
<thead>
<tr>
<th>Time</th>
<th>Premium</th>
<th>Expense</th>
<th>Loss</th>
<th>Income</th>
<th>Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1000.00</td>
<td>275.00</td>
<td>0.00</td>
<td>0.00</td>
<td>725.00</td>
</tr>
<tr>
<td>0.5</td>
<td>0.00</td>
<td>150.00</td>
<td>0.00</td>
<td>29.00</td>
<td>604.00</td>
</tr>
<tr>
<td>1.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>24.16</td>
<td>628.16</td>
</tr>
<tr>
<td>1.5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>25.13</td>
<td>653.29</td>
</tr>
<tr>
<td>2.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>26.13</td>
<td>679.42</td>
</tr>
<tr>
<td>2.5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>27.18</td>
<td>706.59</td>
</tr>
<tr>
<td>3.0</td>
<td>0.00</td>
<td>0.00</td>
<td>650.00</td>
<td>28.26</td>
<td>84.86</td>
</tr>
<tr>
<td>Sum</td>
<td>1000.00</td>
<td>425.00</td>
<td>650.00</td>
<td>159.86</td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td>1000.00</td>
<td>419.23</td>
<td>513.70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[(6)_{0.0} = (2)_{0.0} - (3)_{0.0} - (4)_{0.0}\]
For \(i > 0.0\), \((5)_i = (6)_{i-0.5} \times r_f\)
For \(i > 0.0\), \((6)_i = (6)_{i-0.5} + (2)_i - (3)_i - (4)_i + (5)_i\)

The nominal losses \(L\) and expenses \(X\) add up to $1075, and the premium \(p\) is $1000. The underwriting profit is $75 and the combined ratio is 1075/1000 = 1.075%. The risk free present value of losses and expenses \(PV_0(L + X) = 932.94\), and the ECR equals \(PV_0(L + X)/p = 93.29\%\). By the ECR standard (Swiss Re 2006, as proposed in) the policy is profitable, but the ECR standard incorrectly ignores risk.
To compute the risk-adjusted breakeven value $a_{3,0}$, we need a few more assumptions. Assume $r_l = 3\%$ per half year, and the only loss payment of 650 at time 3 is both the expected and the actual loss. By (3.2), the breakeven net assets at time 3 are $(1 + 0.04)^6 \cdot 650 \cdot ((1 + 0.03)^{-6} - (1 + 0.04)^{-6}) = 38.80$. Since the actual terminal assets are 84.86 (column 6 of Table 3, last entry), greater than 38.80, the policy is profitable under the risk adjusted measure.

The economic value added by the policy is $84.86 - 38.80 = 46.06$. However, this assessment overstates the quality of the policy, because the 1000 premium includes a provision for income taxes, but taxes are omitted so far. Taxes are a significant cost, which I will discuss in the following sections.

4 After-Tax Profit Measures

Insurance companies have a greater tax burden than non-financial companies. In addition to taxes on profits from underwriting and premium investment, a company has to pay taxes on gains from capital investment. This cost is dubbed double taxation—gains from capital investment are taxed twice, first at the corporate level and then at the personal level. All income taxes, including those from capital investment, should be covered by premium, so that the investor who contributes capital to the company does not lose out compared with an investor who directly buys securities on the market. Income taxes are generally a fixed percentage of the pre-tax income. But the precise IRS tax codes are complex. I will make simplifying assumptions to obtain closed-form, trackable results.

4.1 Single-year model

Let c be initial capital contributed by shareholders. The capital serves two purposes. First, the company invests the capital to earn income. Second, with the safety margin provided by the capital, the company is able to issue insurance policies. Assume the company issues policies and collects premium p (net of expenses), and invests the total cash $c + p$ in securities. The policy loss L is paid one year later, and the remaining assets are returned to shareholders.

Assume there is one tax rate, denoted by t, for both underwriting and investment profits. The pretax operating income, from both the policy account and the capital investment, is $(p - L) + (p + c)R_a = p(1 + R_a) - L + cR_a$. The total income

\[6\]In this illustration, for simplicity, I assume that the actual loss payments, investment returns and discount rates are equal to their expected counterparts. But these two sets of numbers are usually different.
tax, paid at time 1, is $t(p(1 + R_a) - L) + tcR_a$.7 The whole tax payment should be deducted from the policy account. The policy account’s after-tax net assets are

$$A_1 = p(1 + R_a) - L - t(p(1 + R_a) - L) - tcR_a$$

$$= (1 - t) \left(p(1 + R_a) - L - \frac{tc}{1 - t} R_a \right)$$

(4.1)

Policy premium p is considered fair if it makes the market value of terminal assets zero. Setting $\text{MV}(A_1) = 0$, and noting $\text{MV}(1 + R_a) = 1$ and $\text{MV}(R_a) = r_f/(1 + r_f)$, we have

$$p = \text{MV}(L) + \frac{tcrf}{(1 - t)(1 + r_f)}$$

(4.2)

The second term is the amount of premium needed to cover taxes on investment income of capital, which is in direct proportion to c. So too much capital hurts the company in price competition. Also note that the fair premium is not affected by how the premium and capital are invested. To derive the expected terminal assets for the policy, we substitute (4.2) into (4.1), and calculate the expected values

$$a_1 = (1 - t) \left(\text{MV}(L) + \frac{tcrf}{(1 - t)(1 + r_f)} \right) (1 + E[R_a]) - E[L] - tcE[R_a]$$

$$= (1 - t)\text{MV}(L)(r_a - r_l) - \frac{tc}{1 + r_f} (r_a - r_f)$$

$$= (1 - t) \frac{E[L]}{1 + r_l} (r_a - r_l) - \frac{tc}{1 + r_f} (r_a - r_f)$$

(4.3)

This is the risk-adjusted breakeven value for the after-tax terminal assets. In (4.3) the first term is essentially the after-tax version of the breakeven value (2.1), and the second term reflects tax on capital. A policy generates a profit if and only if its after-tax terminal assets are greater than a_1.

Consider a special case where the investment is risk free, i.e., $r_a = r_f$. Formula (4.3) reduces to

$$a_1 = (1 - t) \frac{E[L]}{1 + r_l} (r_f - r_l)$$

(4.4)

Remember $r_l \leq r_f$, and the riskier the policy, the smaller the r_l. So a riskier policy has a greater breakeven value (4.4). Note that capital c does not appear in (4.4). This is because, as the investment is risk free, the amount of tax on capital gain is certain, and is exactly covered by the second component of fair premium (4.2).

7In practice, when taxable income is negative, the company may not be able to receive full tax refund in the current year. But we will ignore this complication here.
4.2 Multi-year model

The main goal of the paper is to derive the breakeven value of terminal assets in the most general setting—multi-year, with income tax. This I will do in the remainder of the paper. To obtain trackable results I will make simplified assumptions on the timing and amount of tax payments. Assume taxes are paid at time 1, 2, \ldots. (The interval between \(i-1\) and \(i\) need not be one year. In the example in Table 3, each time period is one half year.) Tax paid at time \(i\) equals tax rate (a constant) times taxable income earned between times \(i-1\) and \(i\). For the purpose of income calculation, I assume loss reserves are discounted at the risk-adjusted rate (also a constant). The simplified tax rules are summarized below

\[
\begin{align*}
\text{Tax Paid}_i &= t \times (\text{Underwriting Gain}_i + \text{Investment Gain}_i) \\
\text{Investment Gain}_i &= r_f \times \text{Investible Assets}_{i-1} \\
\text{Underwriting Gain}_1 &= p - L_1 - \text{Loss Reserve}_1 \\
\text{Underwriting Gain}_i &= -L_i - \text{Loss Reserve}_i + \text{Loss Reserve}_{i-1} \\
\text{Loss Reserve}_i &= MV_i(\text{Unpaid Loss}_i)
\end{align*}
\]

where Unpaid Loss\(_i\) means the future payments \(L_{i+1}, L_{i+2}, \ldots\), and \(MV_i(\text{Unpaid Loss}_i)\) is the present value of this flow discounted at \(r_f\). These rules will be used to derive a breakeven value for after-tax terminal assets. A test on profitability is to compare actual terminal assets, which follows the IRS tax rules, with this breakeven value. Deviation of the simplified tax rules from the IRS rules would create some distortion, which I hope is not material.

Derivation of results in a multi-year model is inevitably complicated. I will state the results here, and present their proofs in an appendix. Again use \(A_i, i = 0, 1, \ldots, n-1\), to denote the (random) assets of the policy account at time \(i\), after loss \(L_i\) is paid. \((A_0 = p)\) Let \(c_i, i = 0, 1, \ldots, n-1\), be the amount of capital held, so that \(A_i + c_i\) is the total investable assets of the company at time \(i\). \(c_i\) might be an amount required by regulators (as assumed in Schirmacher and Feldblum [2006]), or desired by the company management. Again we assume assets are invested risk free, and the risk free rate \(r_f\) is constant for all years.

The fair premium (net of expenses) \(p\) satisfies the equation \(MV_0(A_n) = 0\). The following theorem gives a concise, closed-form formula for the fair premium.

Theorem 1 The fair premium \(p\) is given by

\[
p = MV_0(L) + \frac{t r_f}{(1-t)(1+r_f)} \left(c_0 + \frac{c_1}{1 + (1-t)r_f} + \cdots + \frac{c_{n-1}}{(1 + (1-t)r_f)^{n-1}} \right)
\]

(4.5)
Premium calculation will be discussed in depth in Section 7. To derive the
breakeven value for the after-tax terminal assets, we start from time 0 with pre-
mium (4.5), and successively compute underwriting, investment, tax cash flows,
and the net policy account assets \(A_i \). The result is also a simple closed-form
formula.

Theorem 2 The breakeven value for the after-tax terminal assets in the policy
account is given by

\[
a_n = \frac{(1-t)(r_f - r_l)(1 + (1-t)r_f)^n}{(1-t)r_f - r_l} \sum_{i=1}^{n} E[L_i] \left(\frac{1}{(1+r_l)^i} - \frac{1}{(1 + (1-t)r_f)^i} \right)
\]

\[
= \frac{(1-t)(r_f - r_l)(1 + (1-t)r_f)^n}{(1-t)r_f - r_l} (\text{MV}_0(L) - \text{PV}^{\text{tax}}(L))
\]

(4.6)

where \(\text{PV}^{\text{tax}}(L) \) stands for the present value discounted with the after-tax interest
rate \((1-t)r_f\).

Formula (4.6) does not involve taxes on capital investments (\(c_i \)'s do not appear
in the formula). This is because the tax component in fair premium (4.5) exactly
covers all those taxes. (As in the single-year model, if investments are risky, the
breakeven terminal assets will depend on the \(c_i \)'s.)

These formulas are easy to apply. In Table 4, a tax column is added to Ta-
ble 3, and the policy account assets at each time are recalculated by deducting
taxes. (Note that the tax column contains all taxes, including that on capital
investments.) The last entry of column 7 gives the policy’s after-tax terminal
assets of $33.55. Given the rates \(r_f = 4\% \), \(r_l = 3\% \) and \(t = 35\% \), we compute
\(\text{MV}_0(L) = 650/(1+0.03)^6 = 544.36 \), and \(\text{PV}^{\text{tax}}(L) = 650/(1+(1-0.35)\times0.04)^6 =
557.22 \). Substituting these figures into (4.6), we get the breakeven terminal assets
\(a_{3,0} = 24.37 \). Since this is less than the actual terminal assets of $33.55, the policy
is profitable. The value added by the policy is 33.55 – 24.37 = 9.18.

Calculation of the breakeven value \(a_n \), formula (4.6), does not require the
values of \(c_i \). But \(c_i \)'s are needed in the fair premium formula (4.5).

5 **Linking Breakeven Terminal Assets to Cost of Capital**

The cost of capital (COC) is the rate of return on capital required by shareholders.
Shareholder return is a random variable, and the COC is the expected value of
this return. According to modern finance, the COC is in direct proportion to
the riskiness of the return. For the insurance models under consideration, risk of
Table 4: Policy Account Assets - After Tax

<table>
<thead>
<tr>
<th>Time (1)</th>
<th>Premium (2)</th>
<th>Expense (3)</th>
<th>Loss (4)</th>
<th>Tax (5)</th>
<th>Income (6)</th>
<th>Assets (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1000.00</td>
<td>275.00</td>
<td>0.0</td>
<td>-26.25</td>
<td>0.0</td>
<td>751.25</td>
</tr>
<tr>
<td>0.5</td>
<td>0.00</td>
<td>150.00</td>
<td>0.0</td>
<td>32.45</td>
<td>30.05</td>
<td>598.86</td>
</tr>
<tr>
<td>1.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.0</td>
<td>29.39</td>
<td>23.95</td>
<td>593.42</td>
</tr>
<tr>
<td>1.5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.0</td>
<td>8.13</td>
<td>23.74</td>
<td>609.03</td>
</tr>
<tr>
<td>2.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.0</td>
<td>7.97</td>
<td>24.36</td>
<td>625.43</td>
</tr>
<tr>
<td>2.5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.0</td>
<td>-3.57</td>
<td>25.02</td>
<td>654.01</td>
</tr>
<tr>
<td>3.0</td>
<td>0.00</td>
<td>0.00</td>
<td>650.00</td>
<td>-3.38</td>
<td>26.16</td>
<td>33.55</td>
</tr>
<tr>
<td>Sum</td>
<td>1000.00</td>
<td>425.00</td>
<td>650.00</td>
<td>44.73</td>
<td></td>
<td>153.28</td>
</tr>
<tr>
<td>PV</td>
<td>1000.00</td>
<td>419.23</td>
<td>513.70</td>
<td>40.55</td>
<td></td>
<td>40.55</td>
</tr>
</tbody>
</table>

Column (5) from Table 2 in Schirmacher and Feldblum (2006).

\[(7)_{0.0} = (2)_{0.0} - (3)_{0.0} - (4)_{0.0} - (5)_{0.0}\]

For \(i > 0.0\), \((6)_i = (7)_{i-0.5} \times r_f\)

For \(i > 0.0\), \((7)_i = (7)_{i-0.5} + (2)_{i} - (3)_{i} - (4)_{i} - (5)_{i} + (6)_{i}\)

the shareholder return comes from two sources—volatilities in investment gains and claim payments. In the preceding sections, I have shown that the expected values of claims and investment gains determine an expected value of terminal assets in the policy account. The total return to shareholders is the sum of policy account terminal assets and the investment return on capital. Therefore, the COC is a simple function of the breakeven terminal assets and the expected investment return on capital. This relationship may also be used reversly: if the COC is obtained through stock analysis, a required level of terminal assets can be inferred, which may lead to useful premium calculation.

5.1 Single-year model

The expected value of policy account terminal assets is given in equation (4.3). The expected value of capital investment at time 1 is \(c(1 + r_a)\). Therefore, the
total expected after-tax net assets at time 1 are

\[(1 - t)MV(L)(r_a - r_l) - \frac{tc}{1 + r_f}(r_a - r_f) + c(1 + r_a)\] \hspace{1cm} (5.1)

The expected rate of return on capital is

\[\text{COC} = \frac{(1 - t)MV(L)}{c}(r_a - r_l) - t\frac{c}{1 + r_f}(r_a - r_f) + ra\] \hspace{1cm} (5.2)

By (5.2), the COC is the sum of three terms: the investment rate of return \(ra\); the after-tax spread \((1-t)(r_a - r_l)\) times the “leverage ratio” \(MV(L)/c\); and a term related to taxes on capital investment, which vanishes if the investment is risk free. The following factors would cause the COC to increase (i.e., shareholders require a greater return): riskier investments (greater \(ra\)), more volatile claims (smaller \(r_l\)), or a higher leverage ratio. Increasing the amount of capital would reduce the COC.

In Appendix 2, I will explain that formula (5.2) is consistent with the CAPM. In the CAPM world, an asset’s expected return is in direct proportion to its \(\beta\), which is a measure of the asset’s systematic risk. I will use the given asset rate \(r_a\) and liability rate \(r_l\) to determine \(\beta\) of the shareholder return, and show the expected value of the return—the COC—is exactly given by (5.2).

5.2 Multi-year model

In a multi-year model, shareholders contribute an initial capital \(c_0\) and establish a capital account. The capital account then earns investment income and pays out dividends (releases capital). Let \(c_i\) be the amount of capital held at time \(i\). Then the total assets at time \(i\) are \(A_i + c_i\)\(^\ast\) Assume the interim dividends are released entirely from the capital account; the policy account only distributes its profit at time \(n\)\(^9\). Therefore, the dividend at time \(i\) is simply \(c_{i-1}\) plus the investment income in the year minus \(c_i\). If each \(c_i\) is invested at the constant risk free rate \(r_f\), then the dividend flows out of the capital account are \(-c_0, c_0(1 + r_f) - c_1, c_1(1 + r_f) - c_2, \ldots, c_{n-1}(1 + r_f)\). Obviously, the internal rate of return (IRR) of these flows is \(r_f\).

The expected terminal assets \(a_n\) of the policy account is given in (4.6). Thus the expected total dividend flows are \(-c_0, c_0(1 + r_f) - c_1, c_1(1 + r_f) - c_2, \ldots,\)

\(^\ast\)The asset in this paper corresponds to the income-producing asset in Schirmacher and Feldblum (2006). Non-income-producing assets, like the DTA, are not considered.

\(^9\)This distinction between the policy account and the capital account does not affect profit measurement of the company as a whole. But it is important for measuring the policy account profit separately from the capital account.
\[c_{n-1}(1 + r_f) + a_n. \] The IRR of the total dividend flows is given by the following equation

\[
c_0 = \frac{c_0(1 + r_f) - c_1}{1 + \text{IRR}} + \frac{c_1(1 + r_f) - c_2}{(1 + \text{IRR})^2} + \ldots + \frac{c_{n-1}(1 + r_f) + a_n}{(1 + \text{IRR})^n} \tag{5.3}
\]

This IRR is the average—over \(n \) years—cost of capital of the company. After a policy has run its course, we can compute the IRR of the actual capital flows. If the IRR is greater than (less than) the average COC given by (5.3), the company’s overall operation is profitable (unprofitable). It is worth noting that, since \(a_n > 0 \), the COC is greater than the expected asset rate of return. A greater claims risk implies a greater spread \(r_f - r_l \), thus a greater \(a_n \) and a greater COC.

Back to the example of Table 4. In their paper, Schirmacher and Feldblum (2006) assume the required capital is 25% of the unearned premium reserve plus 15% of the loss reserve. They then compute the required assets at each time \(i \) and the corresponding dividend flows. Table 5 shows the dividend flows out of the capital account (column 6), the total dividend flows (column 7), and the breakeven flows (column 8). These three columns only differ in their last entry. The IRR for column 6 equals the asset rate of return 4%, as expected. The IRR for column 7 is 6.18% (obtained also in Schirmacher and Feldblum 2006). The IRR for column 8, 5.62%, is the COC. Since the IRR of total dividend flows is greater than the COC, the company creates value for shareholders.

6 Decomposing the EVA

Shareholders invest capital in a company expecting to earn the cost of capital. If they earn more than (less than) the COC, then the investment adds (destroys) value. The economic value added is defined as (see, e.g., Schirmacher and Feldblum 2006)

\[
\text{EVA} = \text{After-tax Net Income} - \text{COC} \times \text{Capital Held}
\]

The second term in the formula, \(\text{COC} \times \text{Capital Held} \) is the breakeven value of after-tax income. So this scheme of measuring profits is similar to what we developed in sections 2 to 4. The difference is that, the EVA measures the total profits, while our method addresses profitability of the policy account. From our discussion so far, it is straightforward to decompose this EVA measurement into one for the policy account and another for the capital account.
Table 5: Dividend Flows

<table>
<thead>
<tr>
<th>Time</th>
<th>Policy Account Assets Held</th>
<th>Capital Total</th>
<th>Income on Dividend Flow</th>
<th>Total</th>
<th>Breakeven Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>751.25</td>
<td>428.75</td>
<td>1180.00</td>
<td>0.00</td>
<td>-428.75</td>
</tr>
<tr>
<td>0.5</td>
<td>598.86</td>
<td>362.62</td>
<td>961.48</td>
<td>17.15</td>
<td>83.28</td>
</tr>
<tr>
<td>1.0</td>
<td>593.42</td>
<td>149.53</td>
<td>742.95</td>
<td>14.50</td>
<td>227.60</td>
</tr>
<tr>
<td>1.5</td>
<td>609.03</td>
<td>122.54</td>
<td>731.58</td>
<td>5.98</td>
<td>32.97</td>
</tr>
<tr>
<td>2.0</td>
<td>625.43</td>
<td>94.77</td>
<td>720.20</td>
<td>4.90</td>
<td>32.67</td>
</tr>
<tr>
<td>2.5</td>
<td>654.01</td>
<td>79.84</td>
<td>733.85</td>
<td>3.79</td>
<td>18.73</td>
</tr>
<tr>
<td>3.0</td>
<td>33.55</td>
<td>0.00</td>
<td>33.55</td>
<td>3.19</td>
<td>116.58</td>
</tr>
<tr>
<td>IRR</td>
<td></td>
<td></td>
<td></td>
<td>4.00%</td>
<td>6.18%</td>
</tr>
</tbody>
</table>

Column (2) is column (7) in Table 4.
Column (4) from Table 7 in Schirmacher and Feldblum (2006).
For \(i > 0.0 \), \((5)_i = (3)_{i-0.5} \times r_f\)
For \(i > 0.0 \), \((6)_i = (2)_{i-0.5} + (5)_i - (2)_i\)
For \(i < 3.0 \), \((7)_i = (6)_i\); \((7)_{3.0} = (6)_{3.0} + (7)_{3.0}\) in Table 4
For \(i < 3.0 \), \((8)_i = (6)_i\); \((8)_{3.0} = (6)_{3.0} + a_{3.0}\) \(a_{3.0}\) calculated in Section 4.2

6.1 Single-year model

For the single-year model, the COC is given in formula (5.2), which can be split into two parts. The last term, \(r_a \), is the hurdle rate for the capital account. If the actual return on capital is greater than \(r_a \), then the investment operation adds value. By Section 4.1, the first two terms of (5.2) gives the hurdle rate of the policy account. This leads to the following definition of EVA for the two accounts separately

\[
\text{EVA}_c = c \times (\text{Actual Investment Rate} - r_a) \quad (6.1)
\]

\[
\text{EVA}_p = \text{Actual After-tax terminal assets} - (1 - t)\text{MV}(L)(r_a - r_l) + \frac{tc}{1 + r_f}(r_a - r_f) \quad (6.2)
\]
In (6.2) the actual assets in the policy account are after all taxes, including those on capital gains. Readers familiar with investment portfolio analysis may recognize that the rate spread, Actual Investment Rate \(- r_a\), in (6.1) is Jensen’s alpha for the asset portfolio. Obviously, \(\text{EVA} = \text{EVA}_c + \text{EVA}_p\). If one wish to review the past underwriting performance and make price change, \(\text{EVA}_p\) would provide more accurate information than the EVA.

There are previous efforts on finding methods to separately measure underwriting and investment activities. Bingham (2004) proposes to allocate capital between underwriting and asset investment, find a cost of capital for each of the functions, and separately calculate their value creation. In practice, some companies build models to calculate the underwriting ROE, the investment ROE, and ROEs at various policy group or investment portfolio levels. Our method has some unique features. First, it emphasizes that income tax on capital investment should be deducted from policy account profits. Second, it treats the capital account no different than other investment portfolios, and test it with the established Jensen’s alpha. Third, it is consistent with the CAPM (see Appendix 2), so is theoretically solid.

The policy account itself consists of two activities, underwriting (collecting premiums and paying losses) and investment of premium. But these two activities are more intertwined and we cannot measure them separately. An increase in premium is an achievement of the underwriting department. The resulting gain in profit should be credited entirely to underwriting, not to investment. But the additional premium generates an additional investment income, which cannot be cleanly attributed to either underwriting or investment. Also, the policy account covers income tax on capital investments. It is not clear whether this tax should be covered by underwriting profits or by investment income. Even in our method, performances of the capital account and the policy account are not completely independent. If capital investment generates a higher return, the corresponding income tax increases, which reduces \(\text{EVA}_p\).

6.2 Multi-year model

In general, the EVA is calculated annually based on that year’s income. For an \(n\)-year model, this means a stream of \(n\) EVAs that depends on how loss reserves are set in a particular accounting system. Schirmacher and Feldblum (2006) compute the EVA stream in two accounting systems, the NPV and the IRR. I will not deal with accounting rules here, but only discuss the measurement of economic profits at the end of the policy life.
The IRR of the total dividend flows, denoted by IRR_{tot}, is a standard profit measure of shareholders’ investment. The cost of capital is the breakeven value of IRR_{tot}. As shown in Section 5.2, the total dividend flows are the sum of two component flows: a single flow at time n—the terminal assets—from the policy account, and a stream of dividends from the capital account. Methods of evaluating the two component flows have essentially been derived in previous sections, which are summarized below.

For the policy account, we define

$$\text{EVA}_p = \text{Actual After-tax terminal assets} - a_n$$

(6.3)

EVA_p is the ultimate cash value added by the policy. For the example in Table 5, $\text{EVA}_p = 33.55 - 24.37 = 9.18$. The dividend flows out of the capital account is most conveniently measured by the IRR, denoted by IRR_c. The breakeven value of IRR_c is the expected investment return r_a (or r_f, if capitals are invested risk free). Clearly, if $\text{EVA}_p > 0$ and $\text{IRR}_c > r_a$, then $\text{IRR}_{\text{tot}} > \text{COC}$; conversely, if $\text{EVA}_p < 0$ and $\text{IRR}_c < r_a$, then $\text{IRR}_{\text{tot}} < \text{COC}$. Note that EVA_p, IRR_c and IRR_{tot} are all independent of accounting system. EVA_p provides more useful information to underwriting management than IRR_{tot}.

Here is an extreme situation that in a profitable company the underwriting operation is very unprofitable. An unexpected large loss may exhaust policy account assets before claims are settled. That is, $A_i \leq 0$ for some $i < n$. When this happens, the policy account assets stay negative for all later years. The negative EVA_p would correctly indicate that the policy is unprofitable. However, if the capital investment generates large returns, it is possible that IRR_{tot} still exceeds the COC, indicating a profitable overall operation. IRR_{tot} here says nothing about the underwriting performance.

7 Comparing Direct and Indirect Pricing Methods

Insurance pricing methods are broadly divided into two types. The direct methods are represented by Myers and Cohn (1987), formula (3.4). In these methods, risk of future claims is quantified by the risk load—in this paper, the risk adjusted discount rate. With an indirect method, a target return on capital is first chosen, which is to match the total risk of claims and investments. Then the premium is back-solved to achieve this target. If both methods produce the same fair premium, they are economically equivalent. The formulas derived in sections 4 and 5 give us a mathematical relationship between the two methods.
Formula (4.5) is a direct method for computing \(p \). \(r_l \) is the key parameter that captures the risk of claims. A corresponding indirect method works via these steps: choose a COC, substitute it into (5.3) to get \(a_n \), solve (4.6) (using a numerical method like Goal Seek or Solver in Excel) for \(r_l \), and then compute \(p \) with (4.5). This also shows how \(r_l \) and the COC, the two variables that characterize risk, uniquely determine each other.

I will demonstrate these calculations with the same example. In Section 4.2, we selected \(r_l = 3\% \) and calculated \(MV_0(L) = 544.36 \). Substituting this \(MV_0(L) \) and the \(c_i \)'s in column 3 of Table 5 into (4.5), yields \(p = 569.08 \). Loading in the present value of expenses, $419.23, we get the full policy premium of $988.31. (This breakeven value is less than the actual charge of $1000. Thus the policy is a good deal to beginning with.) To illustrate the algorithm from the COC to \(r_l \) and \(p \), we adopt the assumption in Schirmacher and Feldblum (2006) that the COC is 5\%. Plugging this IRR into the denominators of (5.3), and the \(c_i \)'s in column 3 of Table 5 into the numerators, we obtain \(a_n = $14.76 \). Now use equation (4.6). Since there is only one loss payment of $650 at time 3, \(MV_0(L) = 650/(1 + r_l)^6 \), where \(r_l \) is an unknown variable. Also \(PV_{tax}^n(L) = 557.22 \). Plugging these and all known parameters into (4.6) and solving for \(r_l \), we have \(r_l = 3.39\% \). Using this \(r_l \) in (4.5) gives \(p = 556.98 \). Adding in $419.23 for expenses we obtain the total policy premium of $976.21. To sum up, \(r_l = 3\% \) corresponds to a COC of 5.62\% (column 8 of Table 5), and \(r_l = 3.39\% \) corresponds to a COC of 5\%; the first scenario is more risky, and has a higher premium of $988.31 (vs. $976.21 for the second scenario.)

To use these approaches in a pricing project, it is imperative to determine the capitals (required or desired) \(c_0, c_1, \ldots, c_{n-1} \). In a multi-line company, the company-wide capital needs to be allocated at each time \(i \). More research is needed on these issues.

8 Conclusions

In this paper, we studied risk-adjusted performance measures. We focused on the measurement of terminal assets of the policy account. By comparing the terminal asset with a breakeven value, we determine the amount of profit created by the policy over its lifetime. The main results of the paper are the two theorems in Section 4.2, in which the breakeven terminal asset is formulated in closed form.
in terms of the rates of investment return and loss discounting. In contrast to the familiar risk-adjusted performance measures, the RAROC and the EVA, our approach addresses the underwriting profits separately from capital investment results. The mathematical relationship between the terminal asset, the cost of capital and the EVA is also discussed.

A key input for calculating the fair premium and the breakeven terminal assets, formulas (4.5) and (4.6), is the loss discount rate \(r_l \). It characterizes the underwriting risk of the policy. A link between \(r_l \) and the COC, which reflects the total risk of the company, is discussed in Section 7. How to select either \(r_l \) or the COC to correctly reflect risk is a challenge in application of the formulas. Determination of the stream of capitals \(c_i \) also needs further research.
References

Appendix 1. Proof of the Theorems

Proof of Theorem 1

Formula (4.5) can be written as

\[
p = \sum_{i=1}^{n} \left(MV_0(L_i) + \frac{trf^i c_{i-1}}{(1-t)(1+r_f)(1+(1-t)r_f)^{-1}} \right)
\]

(8.1)
We only need to prove the theorem for each \(i \), that is, for a policy with a single loss payment \(L_i \) at time \(i \), and with a single nonzero capital \(c_{i-1} \) at time \(i-1 \) (considered beginning of year \(i \)), the fair premium is given by
\[
p = MV_0(L_i) + \frac{trfc_{i-1}}{(1-t)(1+r_f)(1+(1-t)r_f)^{i-1}} \tag{8.2}
\]

If (8.2) holds for all \(i \), then (8.1) is true simply by additivity.

If time \(i \) is the only time losses and capital account taxes are paid, then at all other times \(j \), \(j = 1, \ldots i - 1, i + 1, \ldots n \), the only payments are taxes on policy account profits. These profits need to be carefully calculated according to the rules stated in Section 4.2.

Let \(MV_j(L_i) \) be the market value of \(L_i \) at time \(j < i \). The value of \(MV_j(L_i) \) will not be known until time \(j \). Therefore, viewed at time 0, \(MV_j(L_i) \) is a random variable.\[^{11}\] To simplify notations, let \(MV_j(L_i) \) be denoted by \(V_j \). The loss reserve at time \(j < i \) is \(V_j \), and loss reserves are zero after time \(i \). In the following derivation, I start by calculating the net assets at time 1, move forward in time, and end up with terminal assets at time \(n \). I then set the market value of the terminal assets to zero, and solve for the fair premium \(p \).

At time 1, the underwriting gain is \(p - V_1 \) and the investment gain is \(prf \). Then the tax is \(t(p(1 + r_f) - V_1) \). The net assets at time 1 are
\[
A_1 = p(1 + r_f) - t(p(1 + r_f) - V_1) = p(1 + r_f)(1 - t) + tV_1
\]

At time 2, the underwriting gain is \(V_1 - V_2 \) and the investment gain is \(A_1r_f \). Then the tax is \(t(V_1 - V_2 + A_1r_f) \). The net assets at time 2 are
\[
A_2 = A_1(1 + r_f) - t(V_1 - V_2 + A_1r_f)\\
= p(1 + r_f)(1 - t)(1 + (1 - t)r_f) + tV_2 + r_ft(1 - t)V_1
\]

In general, the tax at any time \(j < i \) is \(t(V_{j-1} - V_j + A_{j-1}r_f) \), and it is not hard to prove by induction that the net assets at \(j \) is given by the following formula
\[
A_j = p(1 + r_f)(1 - t)(1 + (1 - t)r_f)^{j-1} + tV_j + r_ft(1 - t)\left(V_{j-1} + (1 + (1 - t)r_f)V_{j-2} + \ldots + (1 + (1 - t)r_f)^{j-2}V_1\right) \tag{8.3}
\]

Now this formula holds for \(A_{i-1} \). At time \(i \), there are two additional payments, loss \(L_i \) and tax on capital investment \(trfc_{i-1} \), and no further loss reserves. So the

\[^{11}\]Rigorously, the market values \(MV_0(L_i) \), \(MV_1(L_i) \), \ldots, \(MV_{i-1}(L_i) \), \(L_i \), are a stochastic process adapted to a filtration indexed by time \(j \).
total tax is \(t(V_{i-1} - L_i + A_{i-1}r_f) \) + \(t\rho f c_{i-1} \), and the net assets are

\[
A_i = A_{i-1}(1 + r_f) - t(V_{i-1} - L_i + A_{i-1}r_f) - tr_f c_{i-1}
\]

\[= p(1 + r_f)(1 - t)(1 + (1 - t)r_f)^{i-1} - (1 - t)L_i + r_f t(1 - t)(V_{i-1}
+(1 + (1 - t)r_f)V_{i-2} + \ldots + (1 + (1 - t)r_f)^{i-2}V_i) - r_f t c_{i-1} \quad (8.4)
\]

After time \(i \), every year the assets \(A_i \) are reinvested and taxes on the investment gains paid. The after-tax investment rate of return is \((1 - t)r_f\). So, the terminal assets at time \(n \) are

\[A_n = A_i(1 + (1 - t)r_f)^{n-i} \quad (8.5)\]

The fair premium \(p \) is so defined as to make the market value of \(A_n \) zero. By (8.5), \(MV_0(A_n) = 0 \) if and only if \(MV_0(A_i) = 0 \). So we need to calculate the market value of each term in (8.4).

The first and the last term in (8.4) are nonrandom constants. The market value, at time 0, of a constant is the constant divided by \((1 + r_f)^i\). The market values of other terms in (8.4) are obtained using the following formula.

\[MV_0(V_j) = MV_0(L_i)/(1 + r_f)^{i-j} \quad (8.6)\]

I will use this formula now to complete the proof. The formula itself will be proved later in the section.

\[
MV_0(A_i)
\]

\[= MV_0(p(1 + r_f)(1 - t)(1 + (1 - t)r_f)^{i-1} - (1 - t)L_i + r_f t(1 - t)(MV_0(V_{i-1})
+(1 + (1 - t)r_f)MV_0(V_{i-2}) + \ldots + (1 + (1 - t)r_f)^{i-2}MV_0(V_i)) - MV_0(r_f t c_{i-1})
\]

\[= \frac{p(1 - t)(1 + (1 - t)r_f)^{i-1}}{(1 + r_f)^{i-1}} - (1 - t)MV_0(L_i)
\]

\[+ \frac{r_f t(1 - t)}{1 + r_f}MV_0(L_i) \left(1 + \frac{1 + (1 - t)r_f}{1 + r_f} + \ldots + \frac{(1 + (1 - t)r_f)^{i-2}}{(1 + r_f)^{i-2}} \right) - \frac{r_f t c_{i-1}}{(1 + r_f)^i}
\]

\[= \frac{p(1 - t)(1 + (1 - t)r_f)^{i-1}}{(1 + r_f)^{i-1}} - (1 - t)MV_0(L_i)
\]

\[+ \frac{r_f t(1 - t)}{1 + r_f}MV_0(L_i) \left(1 - \frac{(1 + (1 - t)r_f)^{i-1}}{(1 + r_f)^{i-1}} \right) \div \left(1 - \frac{1 + (1 - t)r_f}{1 + r_f} \right) - \frac{r_f t c_{i-1}}{(1 + r_f)^i}
\]

\[= \frac{p(1 - t)(1 + (1 - t)r_f)^{i-1}}{(1 + r_f)^{i-1}} - \frac{(1 - t)(1 + (1 - t)r_f)^{i-1}}{(1 + r_f)^{i-1}}MV_0(L_i) - \frac{r_f t c_{i-1}}{(1 + r_f)^i}
\]

Setting \(MV_0(A_i) = 0 \) and solving for \(p \), we get the formula (8.2). This proves Theorem 1.
Note that in the derivation of (4.5) we do not need the assumption that there is a constant risk-adjusted discount rate \(r_l \). Therefore, (4.5) can be used to calculate the fair premium whenever the market value \(MV_0(L) \) can be reasonably estimated.

Proof of formula (8.6)

In formula (8.4), \(A_i \) is a random variable conditioned on all information up to time \(i \). This conditioning statement is important when computing the market value of \(V_j \). \(V_j = MV_j(L_i) \) is a random variable viewed at any point \(j' < j \), but is nonrandom at any \(j' > j \). So it is easy to first discount \(V_j \) to time \(j \),

\[
MV_j(V_j) = \frac{V_j}{(1 + r_f)^{i-j}}
\]

Then, further discounting the above to time 0, we get

\[
MV_0(V_j) = \frac{MV_0(MV_j(L_i))/(1 + r_f)^{i-j} = MV_0(L_i)/(1 + r_f)^{i-j}}
\]

which proves (8.6).

Proof of Theorem 2

Theorem 2 says if a policy charges premium (4.5), then its expected terminal assets at time \(n \) have the form (4.6). I will again prove the theorem by splitting it into \(n \) simpler components. For any \(i < n \), assume that a sub-policy \(i \) has premium (8.2), makes only one loss payment \(L_i \) at time \(i \), and is supported by one nonzero capital \(c_{i-1} \) at time \(i-1 \). I will prove that the expected terminal assets of the sub-policy, at time \(n \), are given by the following formula

\[
a_{n,i} = \frac{(1-t)(r_f - r_l)(1 + (1-t)r_f)^n}{(1-t)r_f - r_l} E[L_i] \left(\frac{1}{(1 + r_l)^i} - \frac{1}{(1 + (1-t)r_f)^i} \right) (8.7)
\]

Obviously, the expected terminal assets of the original policy is the sum of these \(a_{n,i} \)'s. This will prove Theorem 2.

Substituting (8.2) into the right-hand side of (8.4), we have

\[
A_i = \left(V_0 + \frac{tr fc_{i-1}}{(1-t)(1+r_f)(1+(1-t)r_f)^{i-1}} \right) \times (1+r_f)(1-t)(1+(1-t)r_f)^{i-1} - (1-t)L_i \\
+ r_f t(1-t) \left(V_{i-1} + (1+(1-t)r_f)V_{i-2} + \ldots + (1+(1-t)r_f)^{i-2}V_1 \right) - r_f tc_{i-1}
\]

12A rigorous proof of the formula may be stated with stochastic discount factors. The technique is standard in asset pricing theory.
The assumption that there is a constant loss discount rate \(r_l \) implies that \(E[V_j] = E[L_i]/(1 + r_l)^{i-j} \). Noting that the \(c_i \) terms cancel out, we have

\[
E[A_i] = (1 + r_f)(1 - t)(1 + (1 - t)r_f)^{i-1} \frac{E[L_i]}{(1 + r_l)^i} - (1 - t)E[L_i]
\]

\[
+ \frac{r_f t (1 - t)}{1 + r_l} E[L_i] \left(1 + \frac{1 + (1 - t)r_f}{1 + r_l} + \ldots + \frac{(1 + (1 - t)r_f)^{i-2}}{(1 + r_l)^{i-2}} \right)
\]

\[
= (1 + r_f)(1 - t)(1 + (1 - t)r_f)^{i-1} \frac{E[L_i]}{(1 + r_l)^i} - (1 - t)E[L_i]
\]

\[
+ \frac{r_f t (1 - t)}{r_l - (1 - t)r_f} E[L_i] \left(1 - \frac{(1 + (1 - t)r_f)^{i-1}}{(1 + r_l)^{i-1}} \right)
\]

\[
= \left((1 + r_f)(1 - t)(1 + (1 - t)r_f)^{i-1} \frac{E[L_i]}{(1 + r_l)^i} - \frac{r_f t (1 - t)}{r_l - (1 - t)r_f} E[L_i] \frac{(1 + (1 - t)r_f)^{i-1}}{(1 + r_l)^{i-1}} \right)
\]

\[
+ \left(-(1 - t)E[L_i] + \frac{r_f t (1 - t)}{r_l - (1 - t)r_f} E[L_i] \right)
\]

\[
= \frac{(1 - t)(r_f - r_l)(1 + (1 - t)r_f)^i}{(1 - t)r_f - r_l} \frac{E[L_i]}{(1 + r_l)^i} - \frac{(1 - t)(r_f - r_l)}{(1 - t)r_f - r_l} E[L_i]
\]

\(A_i \) is the net asset at time \(i \). After time \(i \), the asset grows at the after-tax investment yield \((1 - t)r_f\). So the terminal net assets at time \(n \) is \(A_{n,i} = A_i(1 + (1 - t)r_f)^{n-i} \). Therefore,

\[
a_{n,i} = E[A_{n,i}] = E[A_i](1 + (1 - t)r_f)^{n-i}
\]

\[
= \frac{(1 - t)(r_f - r_l)(1 + (1 - t)r_f)^i}{(1 - t)r_f - r_l} \frac{E[L_i]}{(1 + r_l)^i} - \frac{1}{(1 + r_l)^i} \frac{1}{(1 + (1 - t)r_f)^i}
\]

This proves (8.7), thus completes the proof of Theorem 2.

Appendix 2. Formula (5.2) is Consistent with the CAPM

Assume our insurance company exists in a CAPM world. That is, the invested assets, the claims and the shareholders’ capital all satisfy the CAPM. For the invested assets we have

\[
E[R_a] = r_a, \quad r_a - r_f = \beta_a m \quad \text{(8.8)}
\]

where \(m \) is the market risk premium. For a policy with premium \(p \) (net of expenses) and future claim \(L \), we define its “return” to be \(R_l = (L - p)/p \), and assume that

\[
E[R_l] = r_l, \quad r_l - r_f = \beta_l m \quad \text{(8.9)}
\]
This liability CAPM is a natural extension of the standard (investment) CAPM, and has been proposed by many authors, see, for example, Sherris (2003). \(r_t \leq r_f \) implies \(\beta_t \leq 0 \). An implicit assumption in this CAPM framework is that all assets are traded at the market value, and all policies are charged the fair premium, which equals the market value of claims.

Formula (4.2) provides a policy’s fair premium \(p \). Substituting it into formula (4.1) gives the after-tax policy account net assets at time 1. Adding in the value of the capital amount we have the following total net assets

\[
C \equiv (1 - t)\text{MV}(L)(R_a - R_l) - \frac{tc}{1 + r_f}(R_a - r_f) + c(1 + R_a) \tag{8.10}
\]

The return on capital, \(R_c = (C - c)/c \), is

\[
R_c = \frac{(1 - t)\text{MV}(L)}{c}(R_a - R_l) - \frac{t}{1 + r_f}(R_a - r_f) + R_a
\]

\[
= \left(1 + \frac{(1 - t)\text{MV}(L)}{c} - \frac{t}{1 + r_f}\right)R_a - \frac{(1 - t)\text{MV}(L)}{c}R_l
\]

\[
+ \frac{t}{1 + r_f}r_f \tag{8.11}
\]

Based on formula (8.11), the shareholder investment \(C \) can be replicated by the following three investments: short-selling an asset, whose return is \(R_l \), and receiving cash \((1 - t)\text{MV}(L)\); lending an amount \(tc/(1 + r_f) \) at the risk free rate \(r_f \); and buying an asset, whose return is \(R_a \), with the net cash \(c + (1 - t)\text{MV}(L) - tc/(1 + r_f) \).

Thus, the \(\beta \) of the investment \(C \) is given by the weighted average of \(\beta \)'s of the three investments

\[
\beta_c = \left(1 + \frac{(1 - t)\text{MV}(L)}{c} - \frac{t}{1 + r_f}\right)\beta_a - \frac{(1 - t)\text{MV}(L)}{c}\beta_l \tag{8.12}
\]

If \(C \) satisfies the CAPM, then \(E[R_c] - r_f = \beta_c \cdot m \). Using (8.8) and (8.9), we obtain

\[
E[R_c] = \left(1 + \frac{(1 - t)\text{MV}(L)}{c} - \frac{t}{1 + r_f}\right)r_a - \frac{(1 - t)\text{MV}(L)}{c}r_l + \frac{t}{1 + r_f}r_f
\]

\[
= r_a + \frac{(1 - t)\text{MV}(L)}{c}(r_a - r_l) - \frac{t}{1 + r_f}(r_a - r_f) \tag{8.13}
\]

This is exactly the COC in formula (5.2).